简介:【摘要】目的:分析帕立骨化醇治疗继发性甲旁亢的效果。方法:选取我院2019年2月-2021年12月诊治的90例继发性甲旁亢患者,依照随机数字表法分为对照组(n=45例)、观察组(n=45例),对照组采用骨化三醇,观察者另外给予帕立骨化醇治疗,比较两组血清钙、磷、营养指标、不良反应。结果:①治疗前,两组血清钙、磷比较(P>0.05);治疗后,观察组血清钙高于对照组(P<0.05),血清磷低于对照组(P<0.05);②治疗前,两组营养指标比较(P>0.05);治疗后,观察组肌酐低于对照组(P<0.05),白蛋白高于对照组(P<0.05);③观察组不良反应发生率低于对照组(P<0.05)。结论:在继发性甲旁亢治疗中,帕立骨化醇能降低不良反应风险,改善血清钙、磷代谢,降低对营养指标的影响,提高治疗效果。
简介:摘要:当前阶段的医药行业对人们的身体健康、日常生活质量、市场经济发展以及社会进步等方面都有着非常重要的促进作用,属于现代化产业与传统产业相互结合的一项综合性产业。伴随着当前阶段的经济发展,人们的健康意识变得更强,社会文明程度不断上升,所以对药品的需求度也越来越高,在这样的社会背景下,我国的医药行业获取了更加广阔的发展空间,同时药品市场的商业竞争力也日趋激烈。现代制药企业想要保证在市场竞争中取得更好的竞争优势,进一步实现其经营目标,就需要进一步保证药物产品的质量和使用效果,因此,加强西药制药的技术工艺的研究,对于促进西药制药工艺技术的提升具有重要的发展意义。
简介:摘要:本文以《多相反应工程中的液-固-气界面反应机制研究》为题,深入研究了多相反应工程中的液-固-气界面反应机制,旨在揭示这一复杂系统的反应机理。通过实验和理论分析,论证了多相反应工程中液-固-气界面反应的关键参数和影响因素,并为相关工程应用提供了理论指导。
简介:摘要:本文探讨了在化工领域中反应动力学与过程优化的重要性以及其应用。首先,文章介绍了反应动力学的基本概念,包括速率方程和活化能等重要参数,并讨论了它们在化工反应中的作用。接着,文章深入探讨了反应动力学与反应过程优化之间的紧密关系,强调了通过了解反应动力学来实现过程优化的重要性。最后,本文提出了一些常见的过程优化方法和工具,如反应器设计、温度控制和催化剂选择等,以帮助化工工程师更好地利用反应动力学来改善生产过程。
简介:摘要:本文旨在探讨化学反应工程中的反应动力学与过程优化研究,通过深入分析反应动力学和工程优化的相关理论与方法,以及实际应用案例的研究,阐述了在工程领域中理解反应动力学如何与过程优化相互关联以实现最佳化的目标。在文中,我们讨论了反应动力学的基本概念,介绍了常见的反应动力学模型,以及它们在工程中的应用。随后,我们探讨了过程优化的方法和工具,以及如何将反应动力学与过程优化相结合,以提高化学反应工程的效率和可持续性。最后,我们总结了当前研究的进展,并展望了未来在这一领域的发展趋势。
简介:摘要:水利工程施工下不良地基的存在对基础质量与结构整体安全造成一定影响,不利水利工程项目建设顺利发展。鉴于此,文章对不良地基对于水利工程的影响进行分析,探讨水利工程不良地基处理技术措施的应用。
简介:摘要:浅埋隧洞在穿越一个复杂的地质段,是非常容易发生隧洞的塌方冒顶等地质灾害。我们针对某一工程输水线路上的四处浅埋不良地质洞段的工程地质条件来进行研究,在他们的施工风险基础上来对隧洞开挖支护的处理方案进行研究。根据我们的调查结果显示,施工的方法采用了暗挖法,经过一系列的处理以及预加固方案,在采取了一定的措施之后,隧洞能够顺利的通行,并且施工过程中的地表建筑物的沉降形变变小。 关键词:浅埋隧洞,不良地质,预加固 我们所研究的工程输水线路是一个穿越了大型的山岭区域的长距离盐水工程,它的主要输水路线是整个工程中最重要的部分,这一输水隧洞沿线地形的起伏比较大,并且他的冲沟发育,河谷深切。线路的中部位置有一些盆地边缘他们的高差相对一般在 450米左右。输水隧洞的前埋穿越区域往往都是地势比较低。比较平缓的地区,也就是地质条件较差的不良地区,会给隧洞的施工带来很大的风险。本文将主要分析输水隧洞所经过的四段典型浅埋不良地质区域的施工风险,在这一基础上我们来对他们的开发方式以及处理方案进行深入的探讨,提出相应的解决措施。 一、浅埋洞段工程地质条件 第一段他们处过一冲沟,这一勾枯季为干沟,雨季有水流冲沟内部有一条乡村的机耕道路,并且该断的隧洞埋深小于 30米,洞底最小处的埋深只有 16米。我们根据总体布置在沟旁的钻孔深度来进行判断,主要为第四系冲洪积层砂卵砾石,洞顶的上部岩性主要为砂夹卵砾石,洞底的洞段位于覆盖的层中。隧洞所过的冲高地段在下水线和洞底以下,地下水对本浅埋段的隧洞施工影响是比较小的。第二段的隧洞,他们的局部为第四系坡积层,冲洪积层,厚度大于了 45米,这就导致了洞段有较大的村庄分布隧洞穿过了村庄的部位,埋深仅有 30米到 40米,顶部的覆基岩厚度大约有两米到 20米之间。第三段的地表有乡村公路,还有零散的居民房以及清水的输水管道,他的冲洪积层厚度大约在 16米到 20米之间,洞顶的基岩厚度仅有 3米到 12米之间。第四段,沿线垂直深埋有 24米左右,地下水位位于洞顶以上大约有 13米到 17米之间。作为一个典型的地下工程,水工隧洞施工过程中会受到地质结构的影响,地质因素的变化会出现不可预见性的塌方事故。