简介:将改进的非线性技术(GA-SVM)应用于成矿预测,为成矿有利度预测方法提供一种新思路。在分析哈图矿集区成矿有利度基础上,选取28个学习样本、10个与成矿有关的地质变量,应用基于遗传算法(GA)寻优的支持向量机(SVM)方法,对成矿有利度进行建模,并与BP神经网络模型预测结果进行比较。结果表明,GA-SVM回归预测模型能很好地拟合成矿有利度与各地质变量间的非线性关系。样本数量有限时,GA-SVM比BP神经网络具较高的拟合精度,更适合非线性成矿预测工作,具较强的推广意义。
简介:灰色系统理论GM(1,1)模型,应用于地面沉降模拟和预测中只能分析数据的指数变化规律。对于地面沉降发展过程中,存在的线性关系不能有效地反映。本文利用灰色组合模型中的第一类灰色组合模型即GM(1,1)与线性回归模型相融合。选取北京东部某地面沉降监测站2004-2012年的分层监测数据建立模型,计算出各监测层位沉降的数学模型,并以此预测各监测层位地面沉降量。结果表明:利用灰色线性回归组合模型在对地面沉降进行分层模拟和预测是可行的。在已有数据的基础上,利用数学模型进行沉降模拟时,两种模型的精度均很高,但通过模型预测未来一年沉降量时,灰色线性回归组合模型的精度,要远高于普通均值GM(1,1)模型。