简介:针对现有页岩气储集层总有机碳含量预测模型存在的模型泛化能力弱、稳定性差的问题,提出了一种利用随机森林回归算法预测储集层总有机碳含量的方法。该方法使用地球物理测井提供的密度、铀含量、钍含量、自然伽马及光电吸收截面吸收指数等测井响应值作为输入,岩芯实验总有机碳含量作为输出,通过学习输入曲线与总有机碳含量的函数关系,动态预测整口井的总有机碳含量曲线。通过对焦石坝地区两口页岩气探井建模及预测可知,当随机森林中树的数量达到500时,建立的模型即可对训练样本中输入与输出的函数关系进行完全学习。通过训练结果及预测结果可知,随机森林回归方法不易发生过拟合现象,泛化能力极强,同时预测得到的曲线更为平滑,预测总有机碳含量较其他方法更为准确,有效地提高测井信息预测总有机碳含量模型的精度,对页岩气储集层评价提供帮助。
简介:用时间序列分析方法做预报,是气象预报中的重要方法之一。气象上观测资料随时间变化大多属非平稳的。所谓非平稳时间序列,表示其统计特征量随时间变化主要有三种表现形式。一种是序列平均值Xt随时间而变,表现为它的一个现实曲线在一条水平线的上下波动大:另一种是序列标准差St随时间变化。这表现为它的一个现实的曲线的波动幅度较大;第三种表现更为复杂,序列均值Xt和标准差St同时随时间而变,这表现为它的一个现实曲线上下波动大,同时波动幅度也大。对于上述三种非平稳序列,至今没有理想的处理办法。本文介绍差分模型方法,能在一定程度上消除均值随时间的变化,而后建立差分自回归模型。效果较好。
简介:将改进的非线性技术(GA-SVM)应用于成矿预测,为成矿有利度预测方法提供一种新思路。在分析哈图矿集区成矿有利度基础上,选取28个学习样本、10个与成矿有关的地质变量,应用基于遗传算法(GA)寻优的支持向量机(SVM)方法,对成矿有利度进行建模,并与BP神经网络模型预测结果进行比较。结果表明,GA-SVM回归预测模型能很好地拟合成矿有利度与各地质变量间的非线性关系。样本数量有限时,GA-SVM比BP神经网络具较高的拟合精度,更适合非线性成矿预测工作,具较强的推广意义。