简介:通过氙灯和热氧人工加速老化研究了191#不饱和聚酯玻璃钢老化后力学性能的变化规律,并对玻璃钢表面形貌和失光率进行了表征。结果表明:氙灯老化后,弯曲强度随老化时间增加先增大后减小,而层间剪切强度则呈下降趋势,老化1800h后弯曲和剪切强度的保持率分别为92%和53%。玻璃钢表面失光率大,有明显的裂纹产生。70%热氧老化,表面形貌保持完好,树脂的后固化和物理老化效应导致玻璃钢的力学强度明显增大,3600h后弯曲和剪切强度增大到老化前强度的107%和150%。光和热的联合作用是玻璃钢表面和界面老化破坏的主要因素。玻璃钢具有较好的耐热氧老化性能。
简介:偏磷酸钙纤维(CMPF)以良好的生物相容性和降解特性在生物医用领域得到了较好的发展和应用,采用熔融纺丝法制备了作为医用复合材料增强相的偏磷酸钙纤维。开展了CMPF在不同pH值磷酸缓冲液中的降解试验,测试得到了纤维直径与降解时间的关系,提出了在任意pH溶液中CMPF直径达到设计指标的降解时间预测模型,最后用CMPF在蒸馏水中的降解试验初步验证了预测模型,并分析预测模型产生偏差的原因。
简介:玻璃纤维由于它的介电常数高和损耗大,通常只作为普通印制电路基板的增强材料。本文介绍了可用于微波电路基板的低介性能(εr2.35,Dk0.00007)的新型增强纤维-环烯烃共聚物纤维及其应用。通过将环烯烃共聚物纤维与玻璃纤维结合在独特的混合布中制成εr3.08,Dk0.013印制电路板基板;将混合布中环烯烃共聚物纤维熔化构成树脂的一种成分,制成εr3.25,Dk0.0013印制电路板基材;通过将含环烯烃共聚物纤维的混织布涂上独特的低介电树脂制成εr2.8,Dk0.0009印制电路板基材的试验,表明环烯烃共聚物纤维是适应当今电子技术发展要求,制作优异介电性能印制电路基板的新型增强材料,用环烯烃共聚物纤维可制出比目前最好的低介电基材质量更轻、介电性能、机械性能更有竞争力的基材。