简介:军用GPS系统必须能在敌方干扰时工作。由于附近干扰机和远距离卫星源之间存在巨大的功率差,所以GPS信号的扩频增益对实现抗干扰(A/J)保护能力是不够的。本文提出了采用自适应天线调零系统来实现附加的抗干扰(A/J)保护能力,但是目前的系统,如AB-1就不能抑制与安装在飞机上阵列相关的近场多径干扰。本文分析了GPS调零时空自适应(STAP)波束形成器的设计,包括STAP处理器对GPS位置计算的影响,该位置通过测量不同卫星信号的到达时差(TDOA)来计算。本文提出了两种新疑结构,其性能通过在1:4比例大小的F-16飞机上进行的多次测量来模拟确定。
简介:共形安装的机载GPS自适应天线阵的性能会受到阵列单元和飞机机身之间相互作用的影响。本文将介绍安装在比例为1:8的F-16飞机模型机身上的7单元微带贴片天线自适应阵列的设计和测量结果,以便评估这种天线阵与飞机间的相互作用及其在将多部宽带干扰机调零时对阵列性能的影响。自适应天线阵工作在12.6GHz的频率上,带宽为160MHz,分别是GPSL1频率和带宽的8倍。所有7个单元的远场天线方向图均在近场天线范围内的成比例频段上作了测量。为了更好地了解机体对天线方向图的影响,我们还将对隔离微带贴片单元测出的方向图与根据OSU-NEWAIR程序(code)计算出的天线方向图作了比较,OSU-NEWAIR程序使用均匀衍射理论来分析天线与机身间的相互作用。比较的结果表明,测量得的方向图和计算出的方向图之间具有良好的一致性。从这些缩比模型测量中收集的数据正在用来测试MITRE(麻省理工学院研究小组)开发的时空自适应调零算法在多部宽带干扰机相对飞机不同取向时的有效性。为了证明这种阵列在有两部窄带干扰机时使用简化直接矩阵求逆算法的调零能力,我们还进行了一些测量。测出的自适应阵列方向性图与理论上的预测十分吻合。文章还阐明了缩比模型测试的优点,以验证机载自适应阵列的调零性能。
简介:传统的线阵MIMO-SAR必须经历一个合成孔径时间,才能获得高精度的雷达三维图像。这就势必降低了成像的实时性,而面阵MIMO-SAR很好地解决了这一问题。研究了MIMO-SAR雷达在发射接收天线孔径长度、最小阵元间距和阵元数目固定等约束条件下的平面阵列天线优化问题。MIMO-SAR采用稀布平面天线,基于天线相位中心近似原理建立了阵列优化模型,提出了一种交叉率和变异率可调的遗传算法进行阵元位置优化。该优化方法有效防止了遗传算法的早熟,解决了MIMO-SAR面阵天线低旁瓣电平和窄主瓣宽度双重设计问题。仿真结果表明了该优化模型的合理性及优化方法的有效性和优越性。
简介:对于极化敏感L型阵列的多参数联合估计问题,采用传统的多重信号分类(MUSIC)算法所需计算量大,采用旋转不变子空间(ESPRIT)算法需要考虑参数配对问题。提出了模值约束下的求根多重信号分类(root-MUSIC)算法,首先利用L型阵列中两个相互垂直的线阵构造两子阵接收数据的自相关函数,采用root—MUSIC算法进行波达方向角(DOA)估计,然后根据模值约束条件构造代价函数,通过闭合式解得到极化参数估计。该算法与传统MUSIC算法相比,大大减少了计算量,同时能够实现参数自动配对,避免了ESPRIT算法的不足。计算机仿真结果表明,该算法的角度估计性能与传统MUSIC算法接近,优于ESPRIT算法,且算法收敛速度快。
简介:理想条件下,均匀线阵的互耦矩阵可用一带状、对称Toeplitz矩阵进行建模。然而实测数据表明,均匀线阵的互耦矩阵具有对称性,但不具有Toeplitz性,此时仍按理想情况建模,会导致DOA估计不准甚至完全失效。基于RBF神经网络,提出了互耦矩阵非Toeplitz条件下的DOA估计方法。算法利用了信号协方差矩阵的对称性和对角线元素不含信号DOA信息的特点,取协方差矩阵的上三角的元素作为网络输入,不仅减少了网络的输入数,同时还提高了与阵列法线夹角60°外的DOA估计精度。实验仿真结果验证了算法的有效性。
简介:NAVSYS公司已开发了一种小型GPS天线阵技术,用以减小天线单元和阵列尺寸。采用该技术可以使具有抗干扰能力的GPS控制的接收方向图天线阵(CRPA)安装在车辆上使用。以前因该阵列尺寸大而被禁止在车辆上使用。同样,因为尺寸和重量的限制,飞机只能使用固定接收方向图的天线(FRPA),而不能使用GPS控制的接收方向图天线阵(CRPA),还有弹头,其空间和面积更是小得可怜。波音公司已开发了另一种GPS抗干扰能力强的模拟工具AGHAST^TM,从而可以预测受控GPS接收方向图天线阵及其校零位电路的抗干扰性能。使用详细的天线方向图和在波音公司暗室中采集的耦合数据,该模拟工具AGHAST^TM可以精确对预测抗干扰硬件在干扰环境下的预期安装性能。本文介绍了一种小型化天线阵技术及其测试结果,并使用AGHAST^TM工具对其抗干扰性能进行了评估。