简介:针对深空次表层探测雷达相邻帧道数据相似的特性,提出了一种对相邻帧道差值数据进行分块自适应量化的算法——帧间差分分块自适应量化(FrameDifferenceBlockAdaptiveQuantization,FD-BAQ)。该算法首先对数据进行分块,然后进行帧间差分,并对差值数据或原始数据进行Lloyd-Max量化,最后用量化后的数据进行重构。在选择对差值数据或原始数据进行量化时,提出用数据方差作为量化误差的衡量指标,当子块差值数据方差小于原始数据方差时,对差值数据进行量化来替代对原始数据量化,否则直接量化原始数据,从而大幅减小量化误差。将该方法与已有改进型BAQ算法比较,实验结果表明,在相同压缩比条件下,FD-BAQ算法在数据域和图像域均能取得更好的压缩效果。
简介:针对天地波高频超视距雷达系统,研究了阵列幅相误差的校准方法。利用方位已知的直达波信号得到的幅相误差值,可以用来对天线阵列进行校准。而在实际雷达工作中,信号会受到杂波和环境影响从而导致校准值的稳定性变差。因此,采用对应时刻的校准值直接补偿会带来较大的误差。针对传统直接补偿存在的缺陷,提出了一种改进方法。该方法采用高斯函数累加模型对每个时刻校准值进行优选,从而达到校准值优化的目的。试验结果表明,该方法能够提高海流结果的准确性。
简介:传统图像局部方向特性的自适应全变分去噪算法,通过计算图像局部方向的角度矩阵,用优化最小化算法迭代求解实现图像去噪,不能保存图像边缘信息,去噪效果及稳定性差。提出基于能量回归滤波全变分图像自适应去噪算法,通过能量回归尺度空间滤波法获取滤波图像时,对源噪声图像进行多尺度二进小波分解获取小波变换系数及低频粗糙分量,采用能量回归滤波法计算小波系数并对小波系数进行重构,获取源图像的滤波图像。采用基于图像局部方向特性的自适应全变分去噪算法从含噪滤波图像中分离出轮廓尺度图像,对含噪图像同轮廓尺度图像实施差计算获取含噪残差纹理细节图像,基于该图像运算获取规整化可信度参数λ后,采用基于参数P与λ的全变分图像自适应去噪算法对带噪滤波图像进行处理,得到消噪图像。实验结果表明:所提算法去噪效果佳,其具有较高的稳定性和效率。