简介:针对一类混沌系统,研究了参数未知的混沌系统的广义同步.基于lyapunov稳定性定理和自适应控制方法,给出了自适应控制器和参数自适应律的解析表达式.将该方法应用于参数未知的新混沌系统,理论证明了该方法可以使新混沌系统达到渐近的广义同步,并且可以辨识出系统的未知参数.数值模拟进一步证明了该方法的有效性.
简介:研究了最新提出的超混沌吕系统的最优同步问题.利用哈密顿-雅可比-贝尔曼方程,对具有不确定参数的超混沌吕系统设计了最优同步的方案,分别得到了无限时间区间和有限时间区间上的最优控制器和参数控制律.数值仿真验证了理论分析的正确性.
简介:研究了一般非完整系统虚位移关系的不确定性问题与非线性问题,提出了本质线性非完整约束和本质非线性非完整约束的概念,证明并给出了各种虚位移定义和交换关系的合理适用范围.研究表明,在本质线性非完整系统中,各种虚位移定义和交换关系是合理的,可以在数学与力学上得到统一.然而,在本质非线性非完整系统中,已有的虚位移定义和各种交换关系会导致数学或力学上的矛盾.这些矛盾来源于对本质非线性非完整约束的物理实现不清楚.
简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.
简介:应A&S的邀请,曼彻斯特首都大学讲师PeterBetts与我们分享他个人关于B-to-B(企业对企业)品牌战略的一些精彩观点。