简介:数据存取延期成为了高端计算系统的突出的性能瓶颈。在系统设计减少数据存取延期的关键是减少数据货摊时间。存储器地区和并发是影响现代存储器系统的性能的二个必要因素。因为全面存储器系统性能上的存储器并发的影响很好没被理解,然而,存在在利用数据存取并发上在很少减少数据货摊时间学习焦点。在这研究,一双新奇数据货摊时间模型,为地区和并发的联合努力的L-C模型和为数据上的纯失误的效果的下午模型阻止时间,被介绍。模型提供数据存取延期的新理解并且为表演优化提供新方向。基于这些新模型,先进缓存优化的一张概括表格被介绍。当时,被数据并发贡献了,把38个条目仅仅,21个条目由数据地区作出贡献,它显示出数据并发的值。在这研究介绍的L-C和下午模型和他们的联系结果和机会为数据中央的建筑学和算法现代计算系统设计的未来重要、必要。
简介:TheInternettechnologyhasalreadychangedtheInformationSocietyinprofoundways,andwillcontinuetodoso.NowadaysmanypeopleforeseethatthereisasimilartrajectoryforthenextgenerationofInternet-GridTechnology.Asanemergingcomputationalandnetworkinginfrastructure,GridComputingisdesignedtoprovidepervasive,uniformandreliableaccesstodata,computationalandhumanresourcesdistributedinadynamic,heterogeneousenvironment.Ontheotherhand,thedevelopmentofGeographicInformationSystem(GIS)hasbeenhighlyinfluencedbytheevolutionofinformationtechnologysuchastheInternet,telecommunications,softwareandvarioustypesofcomputingtechnology.Inparticular,inthedistributedGISdomain,thedevelopmenthasmadesignificantimpactinthepastdecade.However,duetotheclosedandcentralizedlegacyofthearchitectureandthelackofinteroperability,modularity,andflexibility,currentdistributedGISstillcannotfullyaccommodatethedistributed,dynamic,heterogeneousandspeedydevelopmentinnetworkandcomputingenvironments.Hence,thedevelopmentofahighperformancedistributedGISsystemisstillachallengingtask.So,thedevelopmentofGridcomputingtechnologyundoubtedlyprovidesauniqueopportunityfordistributedGIS,andaGridComputingbasedGISparadigmbecomesinevitable.ThispaperproposesanewcomputingplatformbaseddistributedGISframework–theGridGeographicInformationSystem(G2IS).
简介:Spatialapplicationswillgainhighcomplexityasthevolumeofspatialdataincreasesrapidly.Asuitabledataprocessingandcomputinginfrastructureforspatialapplicationsneedstobeestablished.Overthepastdecade,gridhasbecomeapowerfulcomputingenvironmentfordataintensiveandcomputingintensiveapplications.Integratinggridcomputingwithspatialdataprocessingtechnology,theauthorsdesignedaspatialdataprocessinggrid(calledSDPG)toaddresstherelatedproblems.RequirementsofspatialapplicationsareexaminedandthearchitectureofSDPGisdescribedinthispaper.KeytechnologiesforimplementingSDPGarediscussedwithemphasis.
简介:Dataclusteringisasignificantinformationretrievaltechniqueintoday’sdataintensivesociety.Overthelastfewdecadesavastvarietyofhugenumberofdataclusteringalgorithmshavebeendesignedandimplementedforallmostalldatatypes.Thequalityofresultsofclusteranalysismainlydependsontheclusteringalgorithmusedintheanalysis.Architectureofaversatile,lessuserdependent,dynamicandscalabledataclusteringmachineispresented.Themachineselectsforanalysis,thebestavailabledataclusteringalgorithmonthebasisofthecredentialsofthedataandpreviouslyuseddomainknowledge.Thedomainknowledgeisupdatedoncompletionofeachsessionofdataanalysis.
简介:Withmassiveamountsofdatastoredindatabases,mininginformationandknowledgeindatabaseshasbecomeanimportantissueinrecentresearch.Researchersinmanydifferentfieldshaveshowngreatinterestindateminingandknowledgediscoveryindatabases.Severalemergingapplicationsininformationprovidingservices,suchasdatawarehousingandon-lineservicesovertheInternet,alsocallforvariousdataminingandknowledgediscoverytchniquestounderstandusedbehaviorbetter,toimprovetheserviceprovided,andtoincreasethebusinessopportunities.Inresponsetosuchademand,thisarticleistoprovideacomprehensivesurveyonthedataminingandknowledgediscorverytechniquesdevelopedrecently,andintroducesomerealapplicationsystemsaswell.Inconclusion,thisarticlealsolistssomeproblemsandchallengesforfurtherresearch.
简介:Inordertohighrealityandefficiency,thetechniqueofmotioncapture(MoCap)hasbeenwidelyusedinthefieldofcomputeranimation.Withthedevelopmentofmotioncapture,alargeamountofmotioncapturedatabasesareavailableandthisissignificantforthereuseofmotiondata.Butduetothehighdegreeoffreedomsandhighcapturefrequency,thedimensionofthemotioncapturedataisusuallyveryhighandthiswillleadtoalowefficiencyindataprocessing.Sohowtoprocessthehighdimensiondataanddesignanefficientandeffectiveretrievalapproachhasbecomeachallengewhichwecan'tignore.Inthispaper,firstwelayoutsomeproblemsaboutthekeytechniquesinmotioncapturedataprocessing.Thentheexistingapproachesareanalyzedandsummarized.Atlast,somefutureworkisproposed.
简介:Thisresearchtakestheviewthatthemodellingoftemporaldataisafundamentalsteptowardsthesolutionofcapturingsemanticsoftime.Theproblemsinherentinthemodellingoftimearenotuniquetodatabaseprocessing.Therepresentationoftemporalknowledgeandtemporalreasoningarisesinawiderangeofotherdisciplines.Inthispaperanaccountisgivenofatechniqueformodellingthesemanticsoftemporaldataanditsassociatednormalizationmethod.ItdiscussesthetechniquesofprocessingtemporaldatabyemployingaTimeSequence(TS)datamodel.Itshowsanumberofdifferentstrategieswhichareusedtoclassifydifferentdatapropertiesoftemporaldata,anditgoesontodevelopthemodeloftemporaldataandaddressesissuesoftemporaldataapplicationdesignbyintroducingtheconceptoftemporaldatanormalisation.
简介:Page-basedsoftwareDSMsystemssufferfromfalsesharingcausedbythelargesharinggranularity,andonlysupportone-dimensionBlockorCyclicblockdatadistributionschemes,Thusapplicationsrunningonthemwillsufferfrompoordatalocalityandwillbeabletoexploitparallelismonlywhenusingalargenumberofprocessors,Inthispaper.awaytowardssupportingflexibledatadistribution(FDD)onsoftwareDSMsystemispresented.Smallgranularity-tunableblocks,thesizeofwhichcanbesetbycompilerorprogrammer,areusedtooverlaptheworkingdatasetsdistributedamongprocessors.TheFDDwasimplmentedonasoftwareDSMsystemcalledJIAJIA.ComparedwithBlock/Cyclic-blockdistributionschemesusedbymostDSMsystemsnow,experimentsshowthattheproposedwayofflexibledatadistributionismoreeffective.Theperformanceoftheapplicationsusedintheexperimentsissignificantlyimproved.
简介:Thispaperpresentsanewefficientalgorithmforclusteringcategoricaldata,Squeezer,whichcanproducehighqualityclusteringresultsandatthesametimedeservegoodscalability.TheSqueezeralgorithmreadseachtupletinsequence,eitherassigningttoanexistingcluster(initiallynone),orcreatingtasanewcluster,whichisdeterminedbythesimilaritiesbetweentandclusters.Duetoitscharacteristics,theproposedalgorithmisextremelysuitableforclusteringdatastreams,wheregivenasequenceofpoints,theobjectiveistomaintainconsistentlygoodclusteringofthesequencesofar,usingasmallamountofmemoryandtime.OutlierscanalsobehandledefficientlyanddirectlyinSqueezer.Experimentalresultsonreal-lifeandsyntheticdatasetsverifythesuperiorityofSqueezer.