简介:多因变量综合线性回归中变量筛选问题,一直受到学术界的高度关注。针对当前不少学者对多因变量综合线性回归中变量筛选问题的错误认识,尤其是"偏最小二乘回归模型"涉及数学过于深奥,很多学者不能理解其原理,不能适合采用该模型的条件而盲目使用。在利用线性代数中正定与半正定矩阵的性质和矩阵的特征理论的基础上,剖析三种常规线性回归建模方法的原理,揭示"偏最小二乘回归模型"的本性,并在肯定其优越性的同时也指出其应用上的局限性;提出实际应用中合理选择回归模型的若干标准,建立一种容易掌握操作简便且可替代OLS法的"超平面回归模型";利用一个实例对几种回归建模方法的应用效果进行比较和说明。
简介:摘要:把握以上定义,我们的入手点为“存在”,存在即可以找到、可以求出,于是只要求出齐次线性方程(1)的解,其中k1,k2,…ks为未知数。若求得k1=…=ks=0,则向量组a1,a2,…as线性无关;若有多解,即存在一组不全为零的实数k1,k2,…k使得(1)式成立,则向量组a1,a2,…as线性相关关键词:公共基础感性认识理性把握引言线性代数作为一门公共基础课,给人的感觉是概念较多,较抽象难以理解,另一方面,目前国内的独立院校不断地删减课时,用较少的课时把复杂的问题讲清楚、讲明白并能引起学生的兴趣就显的非常重要。这里我们重点介绍第三章“线性方程组与初等变换”一点教学心得……