简介:以鞅变换为工具,刻画了Orlicz-Hardy鞅空间之间的相互关系.即采用构造性方法,证明了如下结论:(1)设Φ_1是凹函数,其下指标q_(Φ_1)〉0,Φ_2是凸函数,其上指标p_(Φ_2)〈∞.则鞅f∈H_(Φ_1)~s,当且仅当f是H_(Φ_2)~s中某个鞅g的鞅变换;(2)设Φ是凹函数,其下指标q_Φ〉0.则鞅f∈H_Φ~s,当且仅当f是BMO_2中某个鞅g的鞅变换.
简介:本文研究Hardy-Lorentz-Karamata空间中鞅的凹函数不等式,具体而言,设Φ是一凹函数,证明了若干关于鞅的极大函数M(f)、均方函数S(f)和条件均方函数s(f)之间的"Φ-Lp,q,b"型不等式.为了获得这些结果,建立了一些新的原子分解定理.
简介:开式凹腔作为超燃冲压发动机中增加掺混和稳焰的装置,其流动稳定性的研究对深入理解凹腔增加掺混和稳焰机理以及凹腔的设计有着重要的学术意义和工程应用价值.基于大涡模拟方法对超燃冲压发动机开式凹腔流动进行数值模拟,分别米用动力学模态分解(dynamicmodedecomposition,DMD)和本征正交分解方法(properorthogonaldecomposition,POD)对自激振荡流动进行稳定性分析.DMD方法可准确提取凹腔的振荡频率,与Rossitei'模型以及压力脉动FFT分析得到的频率吻合较好,且DMD中对应Roster前3阶频率的模态在流动中的主导作用顺序也与FFT分析结果一致,自激振荡中RossiterH模态占据主导作用,同时DMD方法对Rossiter3阶以上模态频率的预测能力明显强于FFT分析方法.在对低频的提取方面,DMD方法比Rossiter模型更具有优势.与前6阶Rossiter模态对应DMD模态均缓慢收敛,主要表现为剪切层中的分离涡结构和中部及下游区域中的涡结构.前3阶不稳定模态中的分离涡结构主要集中在中部剪切层以及后缘附近区域.POD方法中较少的模态包含流场绝大部分的能量.但是,通过POD方法提取的模态频率在分辨率上效果不佳,提取到最低频率为Rossiter3阶模态对应的频率,且模态中均存在次频,次频与主频之间的耦合导致模态的形态相差较大.另外,与DMD方法相比POD方法无法判断所提取的模态的稳定性.
简介:通过梳理我国在增加农民收入上所采取的有关政策、效果评价,总结了学者们对农民收入问题认识的变迁过程,提出农民的收入是其劳动力与其他生产要素相结合的结果,即农民收入是否能够有效地提高,关键在于农民是否可以并且是否愿意灵活地分配其劳动力与其他生产要素相结合。通过运用农户模型(AHM),并基于对广西农户的调研数据进行的线性规划分析,本文得到以下三点结论:首先,专于经济作物种植的农户在收入上仍有较大的增长空间,农业收入依然是他们收入来源和收入增长的主要力量。其次,在实现最优生产决策的前提下,农民仍有大量的劳动时间未被充分利用,这为农民灵活地支配劳动提供了可能。再次,农民是否选择利用剩余的劳动时间离开土地并从事非农产业活动还要根据其种植农作物的品种决定。最后,根据结论提出了相关的对策和建议。