简介:通过分析显式有限差分格式的数值色散和数值耗散,导出一个适于有限差分格式的通用色散一耗散条件.根据群速度和耗散率之间的物理关系,确定了用以抑制数值解中伪高波数波所需要的适度耗散.在以往发展的低耗散加权基本无振荡格式WENO—CU6-M2上的应用表明,该条件可用作优化线性或非线性有限差分格式的色散和耗散的通用指导准则.此外,满足色散-耗散条件的改进WENO—CU6-M2格式还可选作低分辨率数值模拟,以三维Taylor-Green涡向湍流转捩和自相似能量衰减问题展现了它的这种能力.与经典的动态Smagorinsky亚网格尺度模型相比,在Heynolds数胁:400~3000条件下,无黏和黏性Twlor—Green涡的数值模拟结果均得到明显改善.在保持激波捕捉特性同时,与最新的隐式大涡模拟模型的计算效果相当.
简介:从流体力学的基本方程和基本定态解出发,通过Boussinesqu假定及线性稳定性分析方法导出广义的奥尔-索末菲方程,使用有限差分方法对方程进行数值求解,得到低雷诺数下库特流失稳、实现Benard对流强化传热的临界瑞利数Rac。计算结果表明:库特流Benard失稳所需的临界瑞利数Rac随雷诺数Re的增大而减小,并且存在参考雷诺数Rer,当Re大于Rer时,Rac随Re变化很慢,此时,增大Re不能明显降低Rac,流体的传热量也不会随Re的增大而增加。