简介:Inthispaper,theinverseeigenvalueproblemofHermitiangeneralizedanti-Hamiltonianmatricesandrelevantoptimalapproximateproblemareconsidered.Thenecessaryandsufficientconditionsofthesolvabilityforinverseeigenvalueproblemandanexpressionofthegeneralsolutionoftheproblemarederived.Thesolutionoftherelevantoptimalapproximateproblemisgiven.
简介:研究一类特征值问题及其应用.首先应用常微分方程理论讨论一类边值问题非平凡解的存在唯一性,并将该研究结果应用到一类弹性系统的镇定问题.得到了系统渐近稳定的充分条件.
简介:利用锥上的不动点定理证明了二阶Nuemann特征值问题-u″+Mu=λa(t)f(u(t))m0≤t≤1u′(0)=u′(1)=0是的正解存在性结果.
简介:在求块Toeplitz矩阵束(Amn,Bmn)特征值的Lanczos过程中,通过对移位块Toepltz矩阵Amn-ρBmn进行基于sine变换的块预处理,从而改进了位移块Toeplitz矩阵的谱分布,加速了Lanczos过程的收敛速度.该块预处理方法能通过快速算法有效快速执行.本文证明了预处理后Lanczos过程收敛迅速,并通过实验证明该算法求解大规模矩阵问题尤其有效.
简介:本文证明第二种服务可选的M/M/1排队模型的主算子的点谱包含一个区间(-α,0),α〉0.此结果表明该主算子生成的C_0-半群不是紧算子,甚至不是最终紧算子.本文的结果与我们以前的结果合并后得到:(i)该C_0-半群的本质增长界为0.从而,该C_0-半群不是拟紧算子.(ii)该模型的时间依赖解不可能指数收敛于其稳态解.(iii)该C_0-半群的本质谱半径等于1.
简介:研究一类失效状态为吸收状态及重试率为常数的M^[X]/M/1排队模型的主算子在左半实轴上的特征值,证明:当顾客的到达率λ,服务员的服务率v,服务员的服务完成率b,顾客的重试率α满足一定的条件时,-α是该主算子的几何重数为1的特征值.
简介:设G是一个阶数大于等于4的简单连通图.代4(G)和d4(G)分别表示G的第四大无符号拉普拉斯特征值和第四大度.本文证明了K4(G)≥d4(G)一2.
简介:证明0是具有可选服务的M/M/1排队模型的主算子及其共轭算子的几何重数为1的特征值,由此推出该模型的时间依赖解强收敛于该模型的稳态解.