简介:利用上下解方法,锥理论,Schauder不动点定理,Amann不动点定理以及映射度理论研究Sturm—Liouville边值问题(SL.ρ),在某些特定条件下,得到了有多重非负解的存在性结论.从而一定程度上推广和改进了最近的相关结果.
简介:n×m非负实数矩阵的每列元素之和的几何平均值不小于其每行元素的几何平均值之和,运用它给出了一类和(或积)式不等式的简捷证明,也导出了著名不等式:Cauchy不等式、Holder不等式等的推广形式的积分不等式。
简介:研究了以剩余寿命作为增补变量的M/G/1/K排队模型.利用泛函分析中线性算子半群的积分半群理论讨论了该模型的瞬态解的存在唯一性问题.
简介:研究一类失效状态为吸收状态及重试率为常数的M^[X]/M/1排队模型的主算子在左半实轴上的特征值,证明:当顾客的到达率λ,服务员的服务率v,服务员的服务完成率b,顾客的重试率α满足一定的条件时,-α是该主算子的几何重数为1的特征值.