简介:本文研究了一类广义的Lasota-Wazewska模型的正概周期解,通过转化模型为一个等价的积分方程,并利用非增算子的锥上不动点定理,建立了该模型正概周期解存在性的新结果,对照已有的工作,本文的方法是新颖的.
简介:工业化、城市化进程的加快在推进社会经济发展的同时,也催生了公民权利意识和环保意识的觉醒。在整体利益与局部利益、经济利益与环境利益等一系列矛盾交织的宏观背景下,继劳资纠纷、征地拆迁之后,污染类邻避设施成为诱发群体性事件的关键因子。因此,探究政府、邻避设施营建企业与周边民众三方间利益关系,理清相关主体的利益诉求对于邻避冲突的预防和处置具有重要实践意义。本文基于利益相关者理论,探究污染类邻避设施相关利益主体在冲突中所扮演的角色和发挥的作用,进而从博弈论视角出发构建政府、邻避设施营建企业和周边民众之间的三方演化博弈模型。在此基础上,通过对政府、营建企业和周边民众的稳定演化博弈策略选择分析,得出推动博弈三方向演化稳定策略点收敛的条件。利用Matlab对三方演化模型模拟仿真,结果表明政府采取不监管策略、营建企业采取合作策略及周边民众采取不抵抗策略是邻避冲突中三方利益相关者演化博弈的稳定策略点;高强度的政府奖励力度有利于促进营建企业采取合作策略,而抑制周边民众抵抗行为策略的选择;营建企业的经济补偿对于降低民众抵抗力度具有临界点,只有高额的经济补偿才会激励民众选择不抵抗的行为策略;而周边民众的抵抗力度对营建企业的策略选择无显著影响。本文研究结果对邻避冲突中相关利益主体起到一定启示作用:第一,政府作为邻避设施建设的监管者,应注重把握监管力度,完善公众参与渠道,降低个体风险感知;第二,营建企业作为邻避设施建设的实施者,应积极采用环保技术,构建科学利益补偿机制;第三,周边民众对于邻避设施的“落地”发挥关键作用,应加强自身公共理性,合理评估邻避风险,自觉维护社会公共利益。
简介:研究一类失效状态为吸收状态及重试率为常数的M^[X]/M/1排队模型的主算子在左半实轴上的特征值,证明:当顾客的到达率λ,服务员的服务率v,服务员的服务完成率b,顾客的重试率α满足一定的条件时,-α是该主算子的几何重数为1的特征值.
简介:关注学生的核心素养,就是要关注“教育要培养什么样的人”这一最根本的教育问题.那么我们应该培养学生哪些关键性的核心素养,才能让学生将来更好地健康发展.我国现阶段教育非常重视核心素养中的问题解决能力,从思想理论高度和实际操作层面都强调了问题解决能力的培养.21世纪数学的核心素养指标中的问题解决,要求学生能够发现并提出关于数学方面的有价值的问题,并能致力于分析其中的每一种答案.“疑是思之始,学之端”,真正的学习都是从提出问题开始的,如果学生没有自己的问题,就不可能有更大的发展.教学实践证明:如果学生具有自主提出问题的能力,那么他们的各项能力就有极大的提高,他们才能够在自主学习中发现、提出问题,并能够很好地解决问题,从而能获得更好的发展.
简介:为了研究地方综合性高校大学生创新能力、数学建模能力的现状及与文化课的关系,于2018年3月24日组织了2016级960名学生的创新能力和数学建模能力测试,同时收集了被测学生与数学相关课程的期末考试成绩.针对创新能力和数学建模能力,从各等级百分比和统计学分别分析了学院和性别的差异性,得到:创新能力和数学建模能力在学院间存在一定的差异性,但是差异性不显著;创新能力和数学建模能力在性别上不存在差异.计算了创新能力、数学建模能力、文化课间的Pearson相关系数,结果显示创新能力与数学建模能力的相关系数大于与文化课的相关系数,但是三者间的相关性均处在较弱水平.最后,针对测试分析结果给出以创新能力为核心的数学建模教学体系构建的思路.