学科分类
/ 1
20 个结果
  • 简介:本文的目的是研究如下非局部椭圆算子方程在Dirichlet边界条件下变号解的存在性{-Lku=f(x,u)inΩ,u=0,inR^n/Ω,其中Ω∈R^n(n≥2)是具有光滑边界的有界区域,非线性项f满足超线性以及次临界增长条件.利用变号临界点定理,证明了在更弱的条件下无穷多变号解的存在性.

  • 标签: 变号临界点 非局部椭圆算子 CERAMI条件
  • 简介:本文研究了一广义的Lasota-Wazewska模型的正概周期解,通过转化模型为一个等价的积分方程,并利用非增算子的锥上不动点定理,建立了该模型正概周期解存在性的新结果,对照已有的工作,本文的方法是新颖的.

  • 标签: 广义Lasota-W azewska模型 正概周期解 锥上不动点定理
  • 简介:本文运用一种变量代换将非线性Sdhrodinger方程转变为半线性椭圆型方程,再利用山路引理,Lion集中紧引理,Soblev嵌入不等式证明一Schrodinger方程孤子解的存在性.

  • 标签: 非线性 SCHR DINGER方程 山路引理 孤子解
  • 简介:本文主要研究一无穷区间上分数阶边值问题的正解.通过构造特殊的Banach空间,运用Leray-Schauder非线性抉择得到了该边值问题至少存在一个正解以及运用Leggett-Williams不动点定理得到至少存在三个正解.

  • 标签: 分数阶微分方程 无穷区间 边值问题 不动点定理 正解
  • 简介:在概率论的发展过程中,对强极限定理的研究一直占重要地位,强极限定理也一直是国际概率论界研究的中心课题之一.本文通过构造适当的非负鞅,将鞅收敛定理应用于几乎处处收敛的研究,给出了非齐次树上m重非齐次马氏链的一强极限定理.

  • 标签: 强极限定理 马氏链 非齐次树
  • 简介:工业化、城市化进程的加快在推进社会经济发展的同时,也催生了公民权利意识和环保意识的觉醒。在整体利益与局部利益、经济利益与环境利益等一系列矛盾交织的宏观背景下,继劳资纠纷、征地拆迁之后,污染邻避设施成为诱发群体性事件的关键因子。因此,探究政府、邻避设施营建企业与周边民众三方间利益关系,理清相关主体的利益诉求对于邻避冲突的预防和处置具有重要实践意义。本文基于利益相关者理论,探究污染邻避设施相关利益主体在冲突中所扮演的角色和发挥的作用,进而从博弈论视角出发构建政府、邻避设施营建企业和周边民众之间的三方演化博弈模型。在此基础上,通过对政府、营建企业和周边民众的稳定演化博弈策略选择分析,得出推动博弈三方向演化稳定策略点收敛的条件。利用Matlab对三方演化模型模拟仿真,结果表明政府采取不监管策略、营建企业采取合作策略及周边民众采取不抵抗策略是邻避冲突中三方利益相关者演化博弈的稳定策略点;高强度的政府奖励力度有利于促进营建企业采取合作策略,而抑制周边民众抵抗行为策略的选择;营建企业的经济补偿对于降低民众抵抗力度具有临界点,只有高额的经济补偿才会激励民众选择不抵抗的行为策略;而周边民众的抵抗力度对营建企业的策略选择无显著影响。本文研究结果对邻避冲突中相关利益主体起到一定启示作用:第一,政府作为邻避设施建设的监管者,应注重把握监管力度,完善公众参与渠道,降低个体风险感知;第二,营建企业作为邻避设施建设的实施者,应积极采用环保技术,构建科学利益补偿机制;第三,周边民众对于邻避设施的“落地”发挥关键作用,应加强自身公共理性,合理评估邻避风险,自觉维护社会公共利益。

  • 标签: 邻避冲突 污染类邻避设施 演化博弈 利益相关者 仿真分析
  • 简介:研究了一非线性随机非自治SIRS传染病模型的动力学行为.首先,利用Lyapunov函数方法得到了疾病灭绝的充分条件.然后,通过Has′minskii的周期解理论,分成3个区域证明了该系统至少存在1个非平凡的正周期解.最后,利用Matlab进行了数值模拟来说明理论结果.

  • 标签: 随机SIRS模型 饱和发生率 灭绝 周期解
  • 简介:构建了一捕食者相互竞争且具有不同功能反应的随机种群模型.综合考虑白噪声和电噪声的扰动对模型的影响,研究了系统的动力学行为.运用切比雪夫不等式,讨论了系统的有界性.构造恰当的李雅普诺夫函数并运用It8公式,得到了系统随机持久和灭绝的条件.最后,利用指数鞅不等式等技巧,研究了系统的渐近性.

  • 标签: 功能反应函数 马尔可夫转换 持久性 灭绝性 渐近性
  • 简介:改革开放以来,我国经济迅速发展,并取得举世瞩目的发展成就。尤其是近十多年以来,中国经济进入全面发展的黄金期。在国内经济持续发展的过程中,国内基础设施建设和房地产开发进入蓬勃发展期。因此,经济的持续增长使水泥等基础建筑材料产生了巨大的市场需求。

  • 标签: 水泥企业 改革开放 竞争力评价 企业财务 基础设施建设 A股
  • 简介:采用ICP-AES检测H-ZF玻璃中锑含量,对共存元素产生的光谱干扰进行校正,并运用离峰扣除背景消除玻璃基体钛铌的干扰。建立简单可靠的分析方法,加标回收率为95%~110%,相对标准偏差≤2%,适合日常的快速分析需要。

  • 标签: 光学玻璃 ICP-AES
  • 简介:数学直觉就是对于数学对象事物(结构及其联系)的某种直接领悟或洞察.法国数学家庞加莱认为,“逻辑是证明的工具,直觉是发现的工具”.[1]直觉思维,简单地说,就是指对一个问题未经逐步分析,仅依据内因的感知迅速地对问题答案作出判断,猜想、设想,或者在对疑难百思不得其解之中,突然对问题有“灵感”和“顿悟”,甚至对未来事物的结果有“预感”“预言”等都是直觉思维.直觉思维还是一种心理现象,它不仅在创造性思维活动的关键阶段起着极为重要的作用.

  • 标签: 数学直觉思维 课堂 学生 培养 数学对象 心理现象
  • 简介:《普通高中数学课程标准(2017年版)》指出,既要重视教,更要重视学,促进学生学会学习.在平时的教学中,教师要尝试改变传统的教学方式,除了讲授以外,可以让学生小组讨论、动手实践、自我展示,从而改变学生的学习方式.另外做好对学生学习方式的指导,培养学生良好的学习习惯,提高学生自主学习的能力.笔者在教学过程中,深感这种做法的重要意义.本文通过一个教学案例及针对性调查谈些感受.

  • 标签: 学生 教师 数学课程标准 学习方式 教学方式 普通高中
  • 简介:1解题的重要性解题教学是高中数学教学的重要任务.正如著名的数学家、数学教育家G.波利亚在《怎样解题》一书所说:“掌握数学意味什么?这就说要善于解题,不仅善于解决一些标准的题,而且善于解一些要求独立思考,思路合理,见解独到和有发现创造性的题.”他认为中学数学的首要任务就是加强解题训练,因此掌握数学就意味着善于解题,学习数学的主要目的也就在于解题.

  • 标签: 解题教学 中学生 数学教育家 数学家 数学教学 解题训练
  • 简介:研究一失效状态为吸收状态及重试率为常数的M^[X]/M/1排队模型的主算子在左半实轴上的特征值,证明:当顾客的到达率λ,服务员的服务率v,服务员的服务完成率b,顾客的重试率α满足一定的条件时,-α是该主算子的几何重数为1的特征值.

  • 标签: /M/1重试排队模型 特征值 几何重数
  • 简介:批判性思维是一种主动而积极的自我反思的思维过程,其独立性很强.教师在课堂中多途径调动学生全过程积极参与,并主动思考,让学生学会反省自己的思维,培养学生对思维自我检查和自我批评的愿望和习惯是十分重要的.文章主要讨论有关高中数学批判性思维的有关问题,并就提高高中生课堂中批判性思维提出了些可行的的措施.

  • 标签: 批判性思维 高中数学 中学生 数学教学 培养 思维过程
  • 简介:关注学生的核心素养,就是要关注“教育要培养什么样的人”这一最根本的教育问题.那么我们应该培养学生哪些关键性的核心素养,才能让学生将来更好地健康发展.我国现阶段教育非常重视核心素养中的问题解决能力,从思想理论高度和实际操作层面都强调了问题解决能力的培养.21世纪数学的核心素养指标中的问题解决,要求学生能够发现并提出关于数学方面的有价值的问题,并能致力于分析其中的每一种答案.“疑是思之始,学之端”,真正的学习都是从提出问题开始的,如果学生没有自己的问题,就不可能有更大的发展.教学实践证明:如果学生具有自主提出问题的能力,那么他们的各项能力就有极大的提高,他们才能够在自主学习中发现、提出问题,并能够很好地解决问题,从而能获得更好的发展.

  • 标签: 问题解决能力 提出问题 数学课堂 学生 培养 高中
  • 简介:1案例背景在一次集体备课中,讨论六年级上册“稍复杂的百分数实际问题”一课时,大家出现两个不同的观点:第一:出示例题后让学生直接画线段图理解题意还是让学生用自己的方式理解题意;第二:学生会用几种方法解决这道题?就笔者所带班级的学情而言,学生应该只能画线段图理解题意,不会有其他的方式来理解题意的,至于第二点学生也应该只会用两种方法解决,然而实际授课情况却与预设不同.

  • 标签: 教学案例 学生 分数 集体备课 题意 六年级
  • 简介:物理实验具有真实、直观、生动、形象的特点,在物理教学中,常以实验为支点,培育学生的核心素养,本文以“电容器”教学实践为例,通过简单的自制教具、常用的实验室器材进行实验,在学习电容器的构造、功能和工作原理的过程中,培养学生动手操作能力、实验观察能力和科学探究能力。

  • 标签: 物理实验 教具 科学探究 核心素养
  • 简介:为了研究地方综合性高校大学生创新能力、数学建模能力的现状及与文化课的关系,于2018年3月24日组织了2016级960名学生的创新能力和数学建模能力测试,同时收集了被测学生与数学相关课程的期末考试成绩.针对创新能力和数学建模能力,从各等级百分比和统计学分别分析了学院和性别的差异性,得到:创新能力和数学建模能力在学院间存在一定的差异性,但是差异性不显著;创新能力和数学建模能力在性别上不存在差异.计算了创新能力、数学建模能力、文化课间的Pearson相关系数,结果显示创新能力与数学建模能力的相关系数大于与文化课的相关系数,但是三者间的相关性均处在较弱水平.最后,针对测试分析结果给出以创新能力为核心的数学建模教学体系构建的思路.

  • 标签: 数学建模 创新能力 实践能力 数学
  • 简介:本文通过对2017年全国高考理综(I)卷第21题的若干种解法分析,旨在增强高考复习时分析题目的意识,倡导通过一题多解,发散学生的思维,引导学生去寻求发现巧解、妙解,让学生在比较与讨论中找出最简便的解法和独特的富有新意的解题思路,真正培养学生对多种解题方法的认识.利用一题多解既能让学生复习归纳知识,也能让学生在头脑中建立不同知识之间的联系,完善学生的知识认知结构体系,真正促进学生的综合能力的发展.

  • 标签: 动态平衡 一题多解 解题方法 发散思维 综合能力