简介:探讨了Pro-C*-代数中的次正规元,给出了具有余等距对Pro-C*-代数中次正规元的一个代数特征.
简介:假设S(X)是Banach空间X的单位球面,作者引进了四个新的几何参数:Jε(X)=sup{βε(x),x∈S(X)},jε(X)=inf{βε(x),x∈S(X)},Gε(X)=sup{αε(x),x∈S(X)},gε(X)=inf{αε(x),x∈S(S)},其中≤ε≤1,βε(x)=sup{min{‖x+εy‖,‖x-εy‖,y∈S(X)}},αε(x)=inf{max{‖x+εy‖,‖x-εy‖,y∈S(X)}},讨论了这些参数的性质,本文主要结果是:如果主要结果是:如果有一个ε,0≤ε≤1,使得Jε(X)<1+ε/2或gε(X)>1+ε/3,那末X有一至正规结构。
简介:讨论单位圆盘中Dirichlet空间上Toeplitz算子的性质,给出了Dirichiet空间上以一类连续函数为符号的Toeplitz算子满足亚正规性的充分必要条件.
简介:本文得到一个涉及分担函数的亚纯函数族的正规定则:设F是区域D内的一族亚纯函数,k,l是正整数,ψ(z)季0为区域D内全纯函数,且其零点重数至多为l,如果对F中的任意函数,ff≠0,且f的所有极点重数都至少是l+1,如果F中的任意函数f与g满足f^(k)与g^(k)在D内分担ψ(z),那么F在D内正规.
简介:随着时代的发展,社会的进步,人们把关注的目光放到早期科学育儿的领域。幼儿珠心算教育于是应运而生。它所以被上海幼教界所接受并有普及之势,是基于对现代计算进步所付出的代价以后所进行的理性反思,以及脑科学理论的兴起对人们的及时启迪。随着人工智能日益广泛的应用,社会逐步改变劳动在社会中的地位。人工计算包括传统的珠算逐渐被电脑、计算器的计算所代替,久而久之,人脑的计算潜能也被现代化设备所埋没,更有甚者在日常生活中购买物品时离开了计算器竟连简单的加减乘除也不行,人脑的退化到了令人叹为观止的地步。于是,一些有识之士强烈地呼吁要保留并发扬传统的珠算教育这一国粹,让闲置的脑力恢复它应有的功能并创造出惊人的业绩。珠算是我国发明的,明代已流传到日本,现已几乎遍及东南亚、发展到美洲、澳洲和部分欧洲地区。各国何以如此热心引进珠算?其要旨是运用珠算的教育功能,提高学生的心算(珠心算)能力,并在提高计算能力的过程中,以此为抓手,促进学生动脑、动手、培养注意力、意志力,开发学生的智慧的潜能。使得发展智力与智力因素,相辅相成地同步进行。认识到了珠算的特殊功能,上海珠算协会便成了热心于此项事业的塑星...