简介:数学是一门在非常广泛的意义下研究现实世界中的数量关系和空间形式的科学,它的重要性已经得到广泛的认同。然而,数学要真正显示出它在各个领域中的强大生命力,首先必须为所考察的实际问题建立相应的数学模型,这使数学建模成为联系数学与应用的重要桥粱,是数学走向应用的必经之路。同时,数学建模不仅在以往的众多学科和应用中早已占据着关键性的地位和作用,而且现已成为当代应用数学
简介:应用数域上(m,l)幂等矩阵与m幂等矩阵的关系,得到了数域上(m,l)幂等矩阵的l次方幂的代数等价、相似和特征多项式相等是互为确定的结论,由此推广改进了数域上m幂等矩阵的代数等价与正交性的相应结果.
发刊词
(m,l)幂等矩阵的代数等价与正交的一些性质