简介:本文运用Krasnoselskii和Schauder不动点定理,得到了一类分数阶微分方程多点边值问题解的存在性.
简介:研究了含p-Laplacian算子的奇异四阶四点边值问题,利用上下解方法与Schauder不动点定理,获得了至少一个C~3[0,1]正解的存在性结果.
简介:讨论了一类具有奇异系数的p-Laplace问题-Δpu-μ|u|u|x|p=u|x|tu+λuq-2u,x∈Ω,u=0,x∈Ω无穷多解的存在性,其中N≥3,Ω是RN中一有界光滑区域,0∈Ω,Δpu=-div(|▽u|p-2▽u),0≤μ〈μ=(N-p)ppp,1〈p〈N,0≤t〈p,λ〉0,1〈q〈p,p*(t)=p(N-t)(N-p)是Hardy-Sobolev临界指数利用变分原理和对偶喷泉定理,证明了该问题具有无穷多解.
简介:近年来,若干文章对“Lagrange微分中值定理的逆问题”进行了讨论,但其表述均不完整,且证明也较繁琐。本文使用严格凸(严格凹)函数的性质,给出该问题一个条件较弱且表述较完整的结果,其证明也较简洁。
简介:本文用临界点理论中的能量最小原理得到了一类具(q(t),P(t))-Laplacian项的二阶非自治系统存在周期解的充分条件.