简介:在工程实践中,采空区不良效应对桥梁桩基风险影响的评估,需要有进一步的创新方法和更完善的措施,既能准确地评价风险影响,又可以为桥梁基础施工提供保障,成为施工阶段桥梁风险评估的一个新的研究方向。结合某高速公路采空区桥梁桩基的风险估测,采用基于MIDAS/GTS的有限元程序,建立有限元数值模型,通过对煤层未开采直接进行桥梁桩基加载状态沉降、煤层未开采直接进行桥梁桩基加载状态应力、自重应力作用下煤层开采状态采空区沉降、自重应力作用下煤层开采状态采空区应力、采空区注浆回填后桥梁桩基加载状态沉降、采空区注浆回填后桥梁桩基加载状态应力等的分析,得出不同条件下的影响结果,并提出了有效的风险控制策略。研究表明,该评价方法减少了影响桥梁桩基础施工的不安全因素。
简介:采用流式细胞术研究离子液体1-丁基-3-甲基咪唑氯盐([C4mim][Cl])和1-丁基-3-甲基咪唑四氟硼酸盐([C4mim][BF4])对四尾栅藻的毒性影响,测定了细胞增殖、叶绿素荧光、细胞膜完整性和酯酶活性的变化。结果表明,2种离子液体均可抑制细胞增殖,且抑制作用随离子液体质量浓度和暴露时间增加而增强。计算得到96h[C4mim][Cl]和[C4mim][BF4]的半数效应质量浓度EC50分别为49.61mg/L和42.22mg/L。测试期间发现,[C4mim][Cl](质量浓度20~200mg/L)和[C4mim][BF4](质量浓度20~150mg/L)对叶绿素荧光强度有一定的抑制作用,对细胞膜完整性无明显影响,随离子液体处理时间延长,对酯酶活性表现为先刺激后抑制作用;经200mg/L[C4mim][BF4]处理藻细胞96h后,藻细胞叶绿素的平均荧光强度仅为对照组的20%,酯酶活性为对照组的5%,且95%细胞膜发生破裂。2种离子液体对四尾栅藻均有毒性作用,这表明离子液体一旦进入水环境,将会对水生环境带来一定风险。
简介:沉积物作为污染物迁移转化过程中重要的“源”和“汇”,与整个生态系统及人类健康有着密切联系。间隙水很大程度上反映了水体沉积物的污染状况,同时可以真实反映生物的实际暴露情况,间隙水中关键致毒物质的鉴别是科学准确地评价间隙水及沉积物毒性与风险的重要基础。毒性鉴别评估(ToxicityIdentificationEvaluation,TIE)和效应引导的污染物识别(EffectDirectedAnalysis,EDA)技术作为致毒物质识别的主要方法,已在沉积物和间隙水的致毒物筛选中得到了初步的应用。本文介绍并比较了常用的间隙水提取方法,总结了TIE和EDA在间隙水致毒物质异位及原位鉴别方面的应用与发展,及鉴别过程中使用到的基本毒性量化方法与其适用条件。在当前间隙水关键致毒物质识别研究的基础上,指出了异位分析难以避免毒性损失和有机污染物鉴别方面的局限等问题,并提出应推广原位毒性试验技术且进一步发展有机物的精细分离技术和质谱识别技术等发展方向。
简介:氧化石墨烯(grapheneoxide,GO)因其优良的电性能、机械性能,而成为新兴的碳纳米应用材料,但是其制造或应用后排放进入环境水体的潜在生态风险缺少足够的研究,尤其是关于GO生态毒性的基础数据。研究以水生甲壳类动物大型溞(Daphniamagna,D.magna)为受试生物,从急性毒性和慢性毒性两方面考察了GO的生物毒性效应,并结合溞类的光学显微镜观察和体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活力以及丙二醛(MDA)含量的测定对GO对大型溞的致毒机理进行了初步探究。研究结果表明GO对大型溞急性毒性的48h半数致死浓度(48h-LC50)为84.2mg·L^-1;慢性毒性的21d半数致死浓度(21d-LC50)为3.3mg·L^-1。关于GO对大型溞的繁殖毒性,当GO浓度达到1mg·L^-1时能够显著推迟母溞的头胎出生时间,抑制母溞头胎幼溞数、单胎最高产溞数和总产溞数。关于GO对大型溞的致毒机理,研究结果表明消化道堵塞和氧化损伤可能是GO对大型溞的主要致毒途径。上述研究结果为GO在水环境中的毒性效应研究奠定了基础,为GO的工业化应用前景提供了基础的生态毒性数据。
简介:为考察多环芳烃芴对斑马鱼的毒性效应,将斑马鱼成鱼以及0hpf(孵化后0h)和10hpf(孵化后10h)的斑马鱼胚胎分别暴露于不同浓度的芴溶液中,观察各时间段半数致死浓度(LC50)及各毒理学终点的半数效应浓度(EC50)。结果表明,成鱼、0hpf胚胎、10hpf胚胎的48h-LC50分别为4.013、6.074、28980mg·L-1,三者对芴的致死敏感性为成鱼〉0hpf胚胎〉10hpf胚胎。芴的毒性作用主要发生在胚胎的分节期(10h)之前,0hpf胚胎各项指标敏感性依次为:36h心率异常〉48h心包囊肿〉24h无主动运动〉48h卵黄囊水肿〉24h发育阻滞。斑马鱼对芴染毒最敏感指标为36h心率异常,0hpf胚胎心率值随染毒浓度增大而减小,并在8mg·L-1达到抑制峰值,心率最大抑制率为41.3%。芴主要作用于斑马鱼胚胎心脏器官组织。
简介:为探讨钻井液及其组分的毒性效应,采用荧光技术研究了一种水基钻井液WBF及其7种主要组分(HXJ、PAC141、KPAM、PolyAL、XC、PolyA、Mud)对海洋微藻中肋骨条藻(Skeletonemacostatum)的毒性作用,以未加入WBF或其组分的中肋骨条藻的叶绿素荧光强度为参照,计算得到钻井液及其组分对中肋骨条藻不同时间的EC50值.结果表明:WBF的7种单组分中,PolyA对中肋骨条藻的96hEC50=2×103mg·L-1,为有毒组分,PolyAL的96hEC50=3×104mg·L-1,为低毒组分,其余5种组分无毒;WBF的有毒和低毒组分复配时其毒性与作用时间有关,PolyA与PolyAL在24h之内表现为协同作用,之后主要表现为拮抗作用;WBF的毒性主要取决于其有毒组分,而低毒和无毒组分对钻井液的毒性有协同增强作用.
简介:以淡水底栖动物花翅羽摇蚊(Chironomuskiiensis)幼虫为受试生物,研究了沉积物中六氯苯(HCB)对其28d的慢性毒性效应,观察摇蚊幼虫的存活情况和活动行为,以死亡率、羽化率和羽化时间为受试终点,计算28d试验后沉积物中HCB对摇蚊的半数致死浓度(1ethalconcentration50,LC50)以及50%羽化时间(50%emergencetime,EmT50)。结果表明,HCB对摇蚊28d的LC50为59.8mg·kg-1,对摇蚊羽化率的半数效应浓度(halfmaximaleffectiveconcentration,EC50)为59.8mg·kg-1。与大多数污染物不同,HCB有促进摇蚊幼虫筑巢行为和羽化的作用,随着HCB染毒浓度升高,摇蚊幼虫筑巢行为加强,EmT50缩短。暴露于高浓度HCB(〉21.6mg·kg-1)时,摇蚊的EmT50与对照相比明显缩短,尤其对雄性摇蚊影响更大。但与对照相比,HCB对羽化摇蚊的性别比没有很大影响。
简介:为了解尺寸对球形容器连接管道甲烷-空气混合物爆炸的影响规律,利用Fluent软件,采用κ-ε湍流模型、涡耗散模型(简称EDC模型)、壁面热耗散、热辐射模型及SIMPLE算法,建立了球形容器连接管道内甲烷-空气混合物爆炸的数值模型,对容器与管道内甲烷-空气预混气体爆炸的尺寸效应进行了数值模拟。结果表明:随管道内径增大,球形容器内最大爆炸压力逐渐增大,管道末端最大爆炸压力变化无明显规律;而随管道长度增加,球形容器内最大爆炸压力逐渐减小;改变管道内径,较大体积球形容器内最大爆炸压力均大于较小体积球形容器内最大爆炸压力,最大爆炸压力上升速率的规律则相反,容器体积对管道末端最大爆炸压力的影响无明显规律。
简介:生物光谱技术能够有效反映生物、组织以及细胞等样本中生物化学的综合信息,能够精确检测和评价生物分子成分或构象的微观变化,具有快速、客观、无损、重现性好等优点。本文系统综述了生物光谱技术在环境污染物毒性效应研究方面的进展,其中常用的2种技术是红外光谱和拉曼光谱技术。红外光谱技术目前已被广泛用于单一污染物(重金属、有机污染物、纳米材料等)以及复合污染对细胞、植物、动物以及微生物的蛋白质、氨基酸、脂质、DNA/RNA、多糖以及碳水化合物等方面的影响研究之中;拉曼光谱技术包括常规拉曼技术和表面增强拉曼光谱技术,二者均可以用于污染物的毒性效应研究之中,表面增强拉曼光谱技术具有信噪比高、检测限低、灵敏度高等特点,并提供丰富的细胞生物化学指纹图谱信息。数据处理是生物光谱技术应用的重要一环,光谱数据分析大致分为光谱数据预处理、提取光谱信息特征、以及信息分类和光谱特征峰解析3个部分。本研究结果将为进一步系统地开展生物光谱技术在污染物毒性效应方面的研究提供支持。
简介:有机磷酸酯类阻燃剂(organophosphateflameretardants,OPFRs)作为多溴联苯醚等溴代阻燃剂(brominatedflameretardants,BFRs)的替代品被广泛应用,由此带来的环境影响广受关注。目前针对OPFRs的生物毒性研究仍相对有限,需要更全面调查其在多环境介质中的暴露状况、环境归趋、生物毒性效应等研究成果,在此基础上才能综合评价其可能引起的生态风险。因此,综述了OPFRs对水生生物、哺乳动物和人类等多种生物体的急性毒性、生殖与发育毒性、神经毒性、脏器毒性、基因毒性与致突变性和内分泌干扰性。OPFRs的多种生物毒性已得到证实,但相关致毒机制研究尚不完整深入。最后对OPFRs的进一步研究存在的问题进行分析,提出了研究展望,以期促进开展OPFRs的环境风险和人体健康风险研究。