简介:摘要目的验证某射波刀机房的迷路外墙屏蔽的辐射防护效果,发现特殊情况下的屏蔽防护设计缺陷并予以纠正。方法按照生产厂家提供的某射波刀机房辐射防护屏蔽设计方案,主要考虑有用线束经过影像中心,不会直接照射迷路外墙。在对已经建成的机房实施放射防护验收检测时,发现存在有用线束不经过影像中心实施照射的情况并补建屏蔽防护设施,并加以验证。结果经过现场验证检测,在有用线束经过影像中心的情况下,距迷路外墙30 cm相关关注点处的最高周围剂量当量率为0.31 μSv/h,低于参考控制水平10 μSv/h。当有用线束不经过影像中心的情况下,距迷路外墙30 cm相关关注点处的最高周围剂量当量率达到301.67 μSv/h,接近参考控制水平的30倍。对此部分迷路外墙增加厚度以后,距其30 cm处的最高周围剂量当量率为2.14 μSv/h。检测结果符合标准要求。结论建议设计射波刀机房的迷路外墙屏蔽时,应当根据加速器的运动范围确定有用线束是否经过影像中心,是否存在直接照射的迷路外墙的特殊情况,并根据照射范围和辐射源点至关注点的距离,按照有用线束计算屏蔽厚度,以符合标准要求,同时避免在机房迷路外墙相关专注点位置居留的人员受到超剂量照射。
简介:摘要目的依据国内外标准和指南评估低能X射线术中放射治疗室的屏蔽需求,测量屏蔽材料的透射系数、关注位置的周围剂量当量率水平以及防护装置的应用效果,为此类设备屏蔽方案的设计和防护装置的应用提供参考。方法分别依据我国GBZ 121标准、英国医学物理与工程研究所(IPEM)75号报告和美国国家辐射防护与测量委员会(NCRP)151号报告计算INTRABEAM术中放射治疗室所需的屏蔽厚度。实际测量固体水板、屏蔽贴片和防辐射围裙对于此设备产生低能X射线的透射系数,对模拟治疗条件下关注位置处的周围剂量当量率进行测量并评估辐射防护屏的应用效果。结果依据不同标准和指南计算得到治疗室全部关注点处所需铅屏蔽厚度均<0.6 mm,差异为亚毫米水平。此设备产生的低能X射线在屏蔽物质中衰减明显,0.05 mm铅当量屏蔽贴片和0.25 mm铅当量防辐射围裙的透射系数为0.068和0.003 8。使用球形施用器在空气中进行照射时,距离射线源1和2 m处测得的周围剂量当量率为10.7和2.6 mSv/h。将施用器置于小水箱中后,相应的周围剂量当量率降为3.8和0.9 μSv/h,防护屏的使用可以使2 m处的周围剂量当量率降为本底水平。结论低能X射线术中放射治疗设施的屏蔽需求较低,设备产生的射线有效能量低,但在邻近未屏蔽辐射源位置的剂量率较高,应优化设计治疗室屏蔽方案并合理使用防护装置。
简介:摘要目的估算肿瘤质子治疗时重混凝土屏蔽墙中铁元素因中子活化产生的感生放射性56Mn及其水平。方法采用Geant4程序构建某质子治疗机房的重混凝土屏蔽墙模型,模拟245 MeV的质子束照射水模体产生的次级中子,统计屏蔽墙内放射性核素56Mn的分布。将屏蔽墙按每10 cm厚度分层,计算前3层屏蔽墙中放射性核素56Mn产生的周围剂量当量率。结果在最大的束流照射条件(1.872×1010个)下,前3层屏蔽墙内的放射性核素56Mn个数分别为3.10×108、1.60×108和9.33×108个;对治疗室内1 m远处产生的周围剂量当量率分别为2.13×10-3、8.82×10-4和9.10×10-4 μSv/h,总的周围剂量当量率为3.92×10-3 μSv/h。结论在质子治疗时,距离射束中心轴越近,屏蔽墙的感生放射性越强;屏蔽墙前端中子活化铁元素产生的感生放射性最强,感生放射性随着屏蔽墙厚度增大呈指数形式减小,应主要考虑质子治疗机房屏蔽墙前端产生的感生放射性。
简介:目的:分析放射治疗模拟机房物理条件与设备剂量学参数的相互关系,设计并确定合理的机房屏蔽改造方案.方法:以某单位拟投入运行的1台放射治疗模拟机及其拟改造机房为研究对象,在设备调试性出束时使用451P高压电离室巡测仪和SG-102型X-γ环境剂量率仪测量机房外围关注点的辐射水平,并据此进行机房墙体的屏蔽改造方案设计.结果:该模拟机在125kV、1.8mA的最高透视条件下,东、西主束墙外周围剂量当量率最高分别为14μSv/h和4μSv/h,机房室顶上方最高剂量率为185μSv/h,据此初步确定了该模拟机房主束屏蔽的改造方案.结论:放射治疗模拟机房外在透视条件下关注点的周围剂量当量率作为放射防护指标,根据其实测值设计机房的屏蔽改造方案实用可行.
简介:摘要目的探讨国内外不同辐射防护标准对质子治疗机房屏蔽设计的影响。方法以一个多室质子中心机房为例,分别根据美国国家辐射防护与测量委员会(NCRP)151号报告、新加坡辐射防护法案、英国ACoP指南以及国家标准GBZ/T 201.5-2015规定的辐射防护限值,得到相应的屏蔽方案。比较各个机房间隔墙和机房与控制室间隔墙厚度,在保持各个机房设计尺寸不变的前提下,从机房有效使用面积、建设成本等方面讨论上述4种屏蔽方案的差异性。结果由NCRP 151号报告计算得到的各机房墙体(A~F)厚度最薄,由国家标准计算得到的墙体厚度最厚,其中两个旋转治疗室间隔墙厚度增加了1倍以上,总的治疗室使用面积减少17.69%,总建筑材料成本增加44万元。结论通过比较不同屏蔽标准对质子治疗机房设计的影响,发现与其他国际法规或标准相比,我国现行的质子机房辐射屏蔽标准远高于其他国家,这会显著增加机房的屏蔽墙厚度,对国内的质子治疗技术的发展及将来升级到超高剂量率治疗模式都有一定影响。建议参考质子治疗技术相对成熟的国家标准和经验,适当放宽瞬时剂量率限值条件,增加更能反映现实治疗工况的时间平均剂量率(time averaged dose rate,TADR)限值条件,以更好地实现机房屏蔽设计的最优化原则。
简介:摘要目的中外近距离治疗机房辐射屏蔽设计考虑因素不尽相同,本研究以常见的高剂量率192Ir源为例,分别应用国内外标准进行后装机房的屏蔽核算,比较计算结果分析差异产生的原因,为修订和完善现行国家标准提供参考。方法对于典型的后装机房进行工作量估算,放射源初始活度10 Ci(1 Ci=3.7×1010 Bq),分别按照英国医学物理与工程研究所IPEM75号报告、美国辐射防护委员会NCRP151报告和GBZ/T 201.3-2014国家标准设计后装机房屏蔽方案,详细比较不同参考标准的屏蔽限值、居留因子及其他因子的差异。结果典型后装机房的年照射时长约为330 h,按照NCRP151报告、IPEM法规和GBZ/T 201.3-2014国家标准计算得到的控制室、屏蔽墙外、候诊区、相邻控制室和无人居留室顶等关注点位所需的混凝土厚度分别为70、65、61、70、50 cm,41、43、30、40、39 cm和84、79、46、88、39 cm。按照GBZ/T 201.3-2014国家标准计算得到的相应关注点所需的混凝土屏蔽厚度普遍偏厚,与NCRP151报告结果差别较小,IPEM75号报告计算得到的屏蔽厚度最薄;三者计算出的防护门的等效铅屏蔽厚度分别为1.170、0.854和1.040 cm,厚度相近。结论我国现行后装机房屏蔽标准所推荐的计算方法和评价指标计算得到的屏蔽厚度与NCRP151报告的相似但偏保守,特别是现行国家推荐标中要求的瞬时剂量当量率评价指标以及过于保守的居留因子取值会显著增加主屏蔽区所需的屏蔽厚度。