简介:对于二阶半线性中立型微分方程:(r(t)h'(t)α-1h'(t))'+g(t)x(σ(t))α-1x(σ(t))=0的振动性,本文在文[1]的基础上,利用广义Riccati变换、函数单调性和经典不等式,对其做了进一步研究,建立新准则改进了文献的结果,并提供了证明,并给出例子.
简介:本文考察了两个二维环而连通和T~2#T~2上的二阶系统周期解,应用Lustcmik-schorclman理论得到了二阶系统至少有3个几何不同的弱解,进一步若所有弱解都是非退化的,该系统至少有6个几何不同的弱解。
简介:本文给出复微分方程的α-形式解的概念,并用weyl型分数阶积分给出形如t^2z^11(t)-(bt+c)z1(t)+βz(t)=0的复微分方程的一种α-负幂解形式,进而得到这种方程有多项式解的充分必要条件.
简介:利用Krasnosel'skii不动点定理研究了一类二阶非线性常微分方程的三点边值问题正解的存在性问题,得到了正解存在的几个充分条件.
简介:讨论了一类二阶非线性有理差分方程x(n+1)=xn/(a+x(n-1)^2+β),n∈N的平衡点的全局渐近稳定性。并通过Matlab进行数值模拟后给出两个直观的例子。