简介:摘要目的为解决双着丝粒染色体人工分析费时费力的问题,探索人工智能技术,提出一种实现双着丝粒染色体自动识别的算法,从而实现快速高通量生物剂量估算。方法结合人工智能和图像处理技术,基于MATLAB软件,通过研究图像预处理、阈值分割、二值化处理、区域标识、卷积神经网络和双着丝点识别算法,定义模糊隶属度函数来描述每条染色体属于双着丝粒染色体的程度,设定判别阈值,实现双着丝粒染色体自动识别。结果通过对1 471张染色体图像进行算法检验,与人工识别相比,双着丝粒染色体细胞检出率达到了70.7%。结论本算法对双着丝粒染色体自动识别进行了初步研究,并达到了较好的效果。
简介:摘要目的评估人工智能(artificial intelligence,AI)辅助胃癌诊断系统在实时染色放大内镜视频中对内镜医师识别胃癌能力的影响。方法回顾性收集2017年3月—2020年1月武汉大学人民医院和公开数据集中的早期胃癌和非癌染色放大内镜图片作为训练集和独立测试集,其中训练集包括4 667张图片(1 950张早期胃癌和2 717张非癌),测试集包括1 539张图片(483张早期胃癌和1 056张非癌)。利用深度学习进行模型训练。前瞻性收集2020年6月9日—2020年11月17日来自北京大学肿瘤医院和武汉大学人民医院的100例患者的染色放大内镜视频(包含38例癌和62例非癌)作为视频测试集。纳入来自另外4家医院的4名不同年资内镜医师,分2次(无或有AI辅助)对视频测试集进行诊断,评估AI对内镜医师判断胃癌能力的影响。结果无AI辅助时,内镜医师诊断视频测试集中胃癌的准确率、敏感度和特异度分别为81.00%±4.30%、71.05%±9.67%和87.10%±10.88%;在AI辅助下,内镜医师辨认胃癌的准确率、敏感度和特异度分别为86.50%±2.06%、84.87%±11.07%和87.50%±4.47%,诊断准确率(P=0.302)和敏感度(P=0.180)较无AI辅助时均有提升。AI在视频测试集中辨认胃癌的准确率为88.00%(88/100),敏感度为97.37%(37/38),特异度为82.26%(51/62),AI的敏感度高于内镜医师平均水平(P=0.002)。结论AI辅助诊断系统是染色放大内镜模式下辅助诊断胃癌的有效工具,可提高内镜医师对胃癌的诊断能力。它能实时提醒内镜医师关注高风险区域,以降低漏诊率。