简介:摘要本次设计的是基于PSO算法的PID控制器参数优化设计。人们对PID控制器参数优化的研究是紧跟在它产生之后的,现在常用的优化整定方法有两类,分别是工程和理论计算的方法。工程整定方法操作简单而且方便,但是整定过程需要丰富的工程经验,理论算法只要知道被控对象的传递函数,就可以对控制器参数进行优化。粒子群算法的形成是受到了群体智能的影响,它是一种启发式的全局搜索新算法,为了找到搜索空间中的全局最优解,粒子之间的合作方法既有竞争又有协作。这种算法有概念容易掌握、程序容易实现、全局搜索能力强等特征。本文采用粒子群算法进行PID控制器的参数优化,在MATLAB环境下进行算法编译并在SIMULINK中搭建框图进行仿真,同时使用单纯形法对同一个被控对象的PID控制器参数进行优化,对两种算法的优化性能进行了分析比较,发现粒子群优化算法不仅程序编写容易实现,优化速度快,而且优化效果比单纯行法的优化效果优越一些。
简介:摘要本次设计的是基于PSO算法的PID控制器参数优化设计。人们对PID控制器参数优化的研究是紧跟在它产生之后的,现在常用的优化整定方法有两类,分别是工程和理论计算的方法。工程整定方法操作简单而且方便,但是整定过程需要丰富的工程经验,理论算法只要知道被控对象的传递函数,就可以对控制器参数进行优化。粒子群算法的形成是受到了群体智能的影响,它是一种启发式的全局搜索新算法,为了找到搜索空间中的全局最优解,粒子之间的合作方法既有竞争又有协作。这种算法有概念容易掌握、程序容易实现、全局搜索能力强等特征。本文采用粒子群算法进行PID控制器的参数优化,在MATLAB环境下进行算法编译并在SIMULINK中搭建框图进行仿真,同时使用单纯形法对同一个被控对象的PID控制器参数进行优化,对两种算法的优化性能进行了分析比较,发现粒子群优化算法不仅程序编写容易实现,优化速度快,而且优化效果比单纯行法的优化效果优越一些。
简介: