简介:在G-度量空间中,获得了非线性压缩算子F:X×X→X满足混合-g-单调性质下的耦合叠合点结果.减弱了压缩条件,所得结果也是近期文献相关结果的推广.
简介:教学设计教学目标(一)知识与技能1.理解互逆命题、原命题、逆命题的有关概念及关系;2.掌握勾股定理的逆定理的探究方法;3.掌握勾股定理的逆定理并会运用。
简介:1.勾股定理直角三角形中,两直角边的平方和等于斜边的平方.
简介:北师大版初中义务教育数学教科书(第九册)用构造法证明了勾股定理的逆定理,方法经典、不失巧妙(文[1]作了详细叙述),但所构造的新图形显得有些突如其来,给学生的感觉是“太难想到了”;文[1]用反证法来证明,也非常简洁,但反证法需要较强的逻辑思维能力,这对初中阶段的学生来说是较难适应的,更何况应用反证法的前提是“正难则反”.
简介:本文梳理了椭圆的几个经典的等价定义,并研究了椭圆法线定理的逆命题,给出了肯定回答,这个问题与几何光学密切相关.
简介:勾股定理是初中几何的一个重要定理,它主要是用于求直角三角形的边长;而其逆定理则是用于判定一个三角形中的某一个角是直角.由此看来,勾股定理与其逆定理在应用上有着很大的不同,然而却有不少的几何问题必须应用两者“联手”来解决,现略举几例说明.
简介:Darboux定理是数学分析中的一个重要定理.在已有文献的基础上,对该定理作了进一步的研究,利用区间套定理给出了它的新的证明方法.证明思路与现有的其它证明思路是不同的.
简介:勾股定理及其逆定理是平面几何中极为重要的定理.其应用十分广泛.为帮助同学们提高综合运用勾股定理及其逆定理解决问题的能力,现举例说明。
简介:1.如图,在下列横线上填上适当的值:
简介:甲:听说你对勾股定理很有研究,是吗?乙:研究谈不上,多少知道一点罢了.甲:都知道些什么呢?.乙:知道勾股定理的证明有几百种,而且大多数是采用面积证法.听说连美国的一位总统也曾凑过热闹,找到了一种很简便的证法.
简介:勾股定理及其逆定理是几何中的重要定理,应用极其广泛,历年来都是各地中考命题的热点.了解一下往年中考怎么考,同学们学习时就会胸有成竹了.
简介:本文讨论积分中值定理是否具有逆定理,即函数f(x)在[a,b]上连续,对(a,b)内的任意值c,是否存在一个区间[α,β][a,b],使∫αβf(x)dx=f(c)(β-α)。文中对值c分三种情况给出相应的结论.
简介:在G-凸空间中证明了一些新的KKM型定理.作为应用,在G-凸空间中得到了一些新的匹配定理和截口定理,所得结果改进和推广了[2,3,7]中的相关结果.
简介:
简介:美不仅存在于风景名胜、艺术作品、仪表服饰之中,在数学中也有美学的思考,漂亮、简洁、别致等都与真理一样重要.数学王国里许多精美的定理、公式、图形,与艺术品一样,给人以美感。
简介:周朝初年,我国就发现了勾股定理的一个特例,勾三、股四、弦五。我国现存最早的古代数学著作《周髀算经》中就已经介绍了勾股定理,书中记述了商高回答周公问题的一句十分重要的话:
简介:课时一用勾股定理求长度和面积。内容提要1.勾股定理:如果直角三角形的两直角边分别为a,b,斜边为c,那么a^2=b^2+c^2.
简介:早在公元前1000多年,中国人就认识了勾股定理.西周时期有个名叫商高的人就曾说:“故折矩以为勾广三,股修四,径隅五.”这就是说,如果在直角的两边上取AC=3,BC=4,(C为直角顶点).那么AB=5.这就是我们常说的勾3,股4.弦5.我国古人,将直角三角形的两直角边称为勾和股,斜边称为弦,这就是勾股定理这一名称的来历.我们应为中国古代数学的伟大成就而感到自豪.
简介:勾股定理的证明勾股定理来源于实践,但它终需理论的证明,由于勾股定理强大的生命力,去论证它的人络绎不绝。迄今为止,据说人们已创造了约400种证法,这恐怕是任何定理都无法与之相比的,同时也是数学史上罕见的趣闻,给出这些证明的不但有数学家、天文学家,还有物理学家,甚至美国第20届总统伽菲尔德于1876年也提出了一种证法:
G-度量空间中α-Ψ-拓扑压缩映射下的耦合叠合点定理
勾股定理的逆定理
勾股定理及其逆定理
巧证勾股定理逆定理
椭圆法线定理的逆定理
勾股定理及其逆定理“联手”解题
用区间套定理证明Darboux定理
勾股定理及其逆定理的应用
勾股定理及其逆定理专题训练
勾股定理及其逆定理的陷阱
积分中值定理逆定理的研究
G-凸空间中的KKM定理,匹配定理和截口定理
勾股定理
美的定理