简介:摘要文章介绍了大功率射频同轴电缆组件设计时需要考虑的几点主要因素。以一种小型化大功率电缆组件为例,阐述了大功率射频同轴电缆组件设计方法,并对相应的功率计算方法、结构设计等进行重点论述。
简介:目的:探讨低功率射频消融治疗在猪瘦肉组织中形成的消融灶特点。方法:将30份猪瘦肉组织随机分为10组,每组3份。使用MedSphere射频消融仪,分别采用1~10W恒定功率,在高频线阵超声探头引导下进行射频消融。观察消融过程中针尖温度变化及消融后大体标本的消融灶形态,并测量消融灶径线,计算消融灶的体积和纵横比。比较不同功率组消融灶体积及形态,并与病理结果对照。结果:除1W组针尖未能形成消融灶外,其余各功率组均形成椭球体消融灶。其中以3W组消融灶平均体积最大[(1.76±0.40)cm3],消融灶体积与其他各组之间差异均有统计学意义,且消融灶形态最接近球形(平均纵横比为1.21)。病理HE染色可见消融区组织呈凝固性坏死,其大小与大体标本之间差异无统计学意义。结论:MedSphere射频消融仪在功率为3W时所得的消融灶体积最大,形态最接近球形,可用于临床中浅表器官及近危险部位病灶的消融治疗。
简介:摘要:在通信设备中对大功率发射机对功率控制有严格要求,功率器件的二极管特性与温度密切相关,基于DDS技术的射频前端功率控制的调制信号产生方法,可以精确控制功率输出范围,准确消除温度变化带来的功率输出误差。采用MATLAB来生产输出波形的数据,使用FPGA、DSP和DAC组成的DDS产生了高斯脉冲波形及COS2波形的调制信号,并板上验证了该发射功率控制方法的可行性。
简介:目的研究不同输出功率下,双极射频消融装置对不同厚度离体心房组织消融至透壁所需的时间及使用阻抗指标评价透壁性时的病理学检验,从而确定国产消融装置的合理输出功率.方法20头猪屠宰后马上获取猪心,立即浸入4℃的生理盐水溶液中,清洗后制备离体心房组织.使用自行研制的输出功率可调式双极射频消融装置及消融钳,分别使用25W、30W及35W的输出功率对离体心房组织进行消融.消融线间隔约5mm,彼此间平行.消融透壁的指标是消融时该处同时测定的电阻抗大于100Ω.依次使用相同的输出功率,记录对不同厚度心房组织完成消融所需时间.消融完成后,沿两条消融线中点依次剪开心房组织,肉眼检查消融效果,测量消融线处组织厚度.按消融组织厚度,将心房组织分成<2mm、2~4mm(≥2mm,<4mm)、4~6mm(≥4mm,<6mm)及≥6mm4组.对应于不同输出功率和厚度,将心房组织分为12个区组.分别随机挑选每个区组的心房组织10块,将心房组织浸入多聚甲醛溶液,固定后心房组织使用石蜡切片,Mason三色法染色,显微镜下检验是否透壁.结果实验共有350条消融线到达透壁指标.4~6mm及>6mm组的心房组织消融完成时间明显长于<2mm组心房组织[(12.4±0.9)s比(24.3±0.3)s,P=0.042;(12.4±0.9)s比(35.9±0.3)s,P=0.001].消融完成时间在输出功率25W与35W间有显著差异[(28.9±0.5)s比(16.9±0.5)s,P=0.010].心房组织厚度与消融完成时间呈正相关.单次消融到达消融透壁指标时的病理透壁率为0~60%,随心房厚度增厚而降低,随输出功率增加而升高.结论心房组织的消融完成时间随射频输出功率增加而缩短,并与心房组织厚度呈正相关.单次射频消融的透壁率较低.综合考虑消融所需时间、透壁率及安全性,输出功率在30~35W是国产消融仪较为合理的射频输出功率.
简介:【摘要】目的:探讨研究将高功率短时程(HPSD)射频消融应用到治疗心房颤动(atrial fibrillation,Af,简称:房颤)中的作用效果与安全性。方法:选取我院2019年1月至2022年5月期间的188例心房颤动患者,将其随机分为两组,实验组(94例,男48例,女46例);对照组(94例,男50例,女44例)。一般资料无统计学意义(P>0.05)。对实验组采取高功率短时程射频;对照组采用低功率长时程的治疗方式。将两组患者的消融手术时间、消融效果手术成功率及并发症情况等进行对比探讨。结果:实验组患者的手术时间及成功率、消融效果及术后并发症情况等均要优于对照组。结论:高功率短时程射频消融方法用于心房颤动射频消融安全有效,值得推广。