简介:摘要目的构建重症患者压力性损伤风险预测模型,并对其预测效果进行验证。方法选取2019年2—9月入住天津医科大学总医院重症医学科的重症患者,采用队列研究,收集患者相关资料,以是否发生压力性损伤为因变量,对相关资料进行单因素和多因素分析建立预测模型,并进行风险分层和预测效果检验。结果重症患者329例,发生压力性损伤48例;对11个影响因素的单因素分析,血乳酸、体温、ICU住院日数、Braden评分、意识状态、年龄、升压药物治疗是压力性损伤发生的可疑影响因素,差异均有统计学意义(Z值为2.575~3.694,χ2值为6.800、30.510、6.344,P<0.05或0.01);可疑影响因素带入二元Logistic回归分析结果显示,患者入ICU 24 h内体温、Braden评分、意识状态、年龄及ICU住院时间是压力性损伤发生的独立影响因素(P<0.05或0.01),建立预测模型。内部验证构建模型有统计学意义且拟合度好,灵敏度为66.7%,特异度为72.2%;根据模型进行风险分层,高危组与低危组差异有统计学意义(t值为-33.371,P<0.01);临床验证预测效果特征(ROC)曲线下面积(AUC)为0.758。结论构建的预测模型是重症患者临床特征的客观指标科学组合有统计学意义;有预测重症患者发生压力性损伤风险的能力;同时具有良好的区分度,对重症患者风险分层管理提供理论依据,具有临床应用价值。
简介:摘要目的构建重症患者压力性损伤风险预测模型,并对其预测效果进行验证。方法选取2019年2—9月入住天津医科大学总医院重症医学科的重症患者,采用队列研究,收集患者相关资料,以是否发生压力性损伤为因变量,对相关资料进行单因素和多因素分析建立预测模型,并进行风险分层和预测效果检验。结果重症患者329例,发生压力性损伤48例;对11个影响因素的单因素分析,血乳酸、体温、ICU住院日数、Braden评分、意识状态、年龄、升压药物治疗是压力性损伤发生的可疑影响因素,差异均有统计学意义(Z值为2.575~3.694,χ2值为6.800、30.510、6.344,P<0.05或0.01);可疑影响因素带入二元Logistic回归分析结果显示,患者入ICU 24 h内体温、Braden评分、意识状态、年龄及ICU住院时间是压力性损伤发生的独立影响因素(P<0.05或0.01),建立预测模型。内部验证构建模型有统计学意义且拟合度好,灵敏度为66.7%,特异度为72.2%;根据模型进行风险分层,高危组与低危组差异有统计学意义(t值为-33.371,P<0.01);临床验证预测效果特征(ROC)曲线下面积(AUC)为0.758。结论构建的预测模型是重症患者临床特征的客观指标科学组合有统计学意义;有预测重症患者发生压力性损伤风险的能力;同时具有良好的区分度,对重症患者风险分层管理提供理论依据,具有临床应用价值。
简介:摘要目的通过构建不等权组合模型预测我国2020年至2035年医师需求数量,为卫生人力资源的规划提供科学参考。方法采用趋势外推法、人力/人口比值法、卫生服务需求法对我国2020年至2035年医师需求进行初步预测,进而采用德尔菲法对这3种方法的结果进行不等权组合,计算得出2020年至2035年我国医师需求。结果通过不等权组合模型预测,2020年至2035年我国医师需求逐步增长,从2.64人/千人口增至3.67人/千人口,但增长幅度逐步放缓。结论运用不等权组合预测模型,综合服务需求和历史现状,测算方法科学可行。建议参照医师需求的同时,综合考虑影响医师供需平衡的因素进行医学教育及医师分科相关的政策制定。
简介:摘要:为解决工业企业中,工业机器人、大型盾构机、道岔等大型工业设备,施工环境恶劣,维护成本昂贵,乃至产品质量和有序生产。开发工业设备预测性维护系统。系统基于SpringBoot后端框架、VUE前端框架、TensorFlow大数据分析框架对系统进行开发;基于物联网设备系统在针对非计划停机维护的相关工业指标进行实时数据采集;基于多数据源设定标准化API读取;基于SPARK大数据处理框架对设备维护模块进行在线实时分析;基于行业应用模型,在确保生产质量和生产进度的基础上,使用机器学习回归算法对历史数据和行业数据进行预测模型训练,输出预测性维护指标和大型停机检修计划表及预应对方案;最后通过行业场景应用验证了设计系统的可行性。
简介:摘要: 光伏发电大规模接入电网会使电网产生一定波动,对电力系统产生影响,提高光伏发电量预测的准确性是发展光伏发电技术及保证电网稳定性的关键.本文对光伏发电量预测方法进行归纳总结,根据研究原理将其分为直接预测法和间接预测法,并对直接预测法中的混合模型做了具体分类:基于确定神经网络初始权值的混合模型、基于光伏数据预处理的混合模型及其他混合模型.通过比较各种方法的平均绝对百分比误差(MAPE)及仿真时间,对各种方法进行评估.结果 表明:人工智能预测法目前应用最广,MAPE在3%~15%之间,其中,深度学习网络模型预测误差最小,但仿真时间较长且模型复杂度较高;混合模型可以有效减小预测误差,总体预测误差小于10%,是未来一个重要的研究领域.
简介:摘要目的分析2019—2020监测年度,中国大陆地区流感暴发疫情的流行病学和病原学特征,为科学制定流感疫情防控政策提供参考依据。方法收集2019年4月1日至2020年3月29日"突发公共卫生事件管理信息系统"和"中国流感监测信息系统"报告的2019—2020监测年度流感和流感样病例(influenza like illness,ILI)暴发疫情数据,对2019—2020年流感监测年度中国大陆流感和ILI暴发疫情的特征进行描述性分析。结果中国大陆地区2019—2020监测年度共报告流感和ILI暴发疫情3 864起,其中流感暴发疫情为3 675起(占95.11%);南、北方片区在2019年4月至5月达到一个小高峰,随后逐渐下降,南方地区于7月至9月呈低水平流行,北方地区于6月至10月呈低水平流行。随后疫情呈上升趋势,南、北方片区全年ILI暴发疫情最高峰均出现在2019年12月(分别是1731起和467起),自2020年1月底开始,迅速下降至极低水平。除2019年8月外,该监测年度各月份南方片区流感暴发疫情起数均高于北方片区。各种类型学校共报告暴发疫情起数为3 804起,占比为98.45%,中、小学校为暴发疫情报告的最主要场所,共报告暴发疫情3 382起(87.53%)。结论2019—2020监测年度南方地区流感暴发疫情高于北方地区,呈明显的季节性,秋冬季为暴发疫情的高峰期,应加强学校的流感防控工作,减少聚集性暴发疫情的发生。