简介:根据平面动力系统的分支理论,研究了广义Fisher方程在平衡点是鞍点或结点时,讨论了它的抛物线解的存在性.由抛物线解的存在性,在不同的参数条件下,得到了方程扭波解的精确参数表示.
简介:利用辅助方程法并借助符号计算软件Maple求解了具有高阶非线性项的广义二维BBM方程,并获得该方程丰富的精确行波解,其中包括三角函数解、双曲函数解、双周期Jacobi椭圆函数解。
简介:本文讨论矩阵方程ATX+xTA=C的一般解及其最佳逼近解的正交投影迭代解法.首先,利用矩阵的结构特点及相关性质,并借助矩阵空间的相关理论,给出求该矩阵方程一般解正交投影迭代算法;其次,根据奇异值分解、F-范数正交变换不变性证明算法的收敛性并推导出算法的收敛速率估计式,当方程相容时,该算法收敛于问题的极小范数解,且对该算法稍加修改,就可得到相应最佳逼近解;最后,用数值实例验证算法的有效性.
简介:本文用动力系统方平面分支方法,研究一个广义Vakhnenko方程的圈波.在p=3的参数条件下,获得了精确的周期圈波和圈孤子解的表达式,作出了周期圈波和圈孤子的平面图形,直观的显示了这两种解的动力学性质.本文的结果丰富了广义Vakhnenko方程的研究.
简介:应用整体反函数理论证明了广义Lienard方程a(t)x"+f(x,x′)x′+g(t,x)=e(t),x(0)-x(2π)=x′(0)-x′(2π)=0,周期解的存在唯一性,并由此得到它在几种特殊情况下周期解的存在唯一性定理.
简介:在锥序Banach空间中引入了集值映射ε-严有效意义下的广义梯度.在连通性条件下,利用凸集分离定理证明了该广义梯度的存在性.作为应用,给出了用广义梯度刻画集值优化问题ε-严有效解的充分和必要条件.
简介:在Hilbert空间中满足Lipschitz连续的条件,用预解方程和不动点理论,在算子强单调的条件下,通过Mann迭代和收敛性分析证明了广义混合变分不等式解的问题。
简介:本文研究了一类广义的Lasota-Wazewska模型的正概周期解,通过转化模型为一个等价的积分方程,并利用非增算子的锥上不动点定理,建立了该模型正概周期解存在性的新结果,对照已有的工作,本文的方法是新颖的.
简介:Inthispaper,westudytheglobalasymptotiestabilityofthezerosolutionofageneralizedLienard'ssystem{x^.=φ(y)y^.=-f(x)φ(y)-g(x)byconstructinganewLiapunovfunction.Thesufficientandneoessaryconditionsforglobalasymptoticstabilityundergivenconditionsareobtained.
简介:本文首先利用共轭梯度及矩阵性质,构造迭代算法,并证明算法的收敛性,同时对该算法当方程相容时收敛到问题的极小范数解进行证明.然后,对该算法进行细微修改,应用于相应的最佳逼近问题.最后给出相关的数值实例,验证算法的有效性.
简介:应用变分方法与Morse理论,本文讨论下面含有时滞的广义Hamilton系统的周期解,J^*du/dt=g(t,u(t-r1),…,u(t-rs))其中J^*是非奇异2n×2n反对称矩阵,在一定条件下,本文得到上述议程至少存在两个非平凡2π-周期解;而对于一般的微分系统,本文给出其具有变分结构的判定性准则。
简介:给出一个求广义强非线性拟变分不等式分歧值近似解的迭代算法,该算法不同于文[1]中的算法,进一步证明近似解序列强收敛于精确解.