简介:摘要轨道的几何参数的检测是列车能够安全运行的基本保障。但列车在低速连续运动时进行轨道几何参数检测的过程中受到了陀螺仪和加速度计累计误差的影响,使得最终检测结果的精确度就受到明显的影响而降低。本文采用机器视觉与惯性信息融合的轨道几何参数检测方法以解决上述问题,在轨道几何参数检测的时候先将多个传感器融合在一起,然后再通过卡尔曼滤波算法对机器视觉检测和惯性信息进行融合,提高了轨道几何参数检测结果的精度,最后在通过相应的测量平台对机器视觉与惯性信息融合的轨道几何参数检测进行相应的试验验证,结果表明本检测方法的测量精度比常规的惯性测量精度高5倍左右。
简介:大视角图像匹配算法的鲁棒性与实时性直接影响飞行器对远距离目标定位的性能。针对目前仿射不变图像匹配算法实时性较差的问题,提出一种惯性信息辅助的快速大视角图像匹配方法。该方法对现有的快速图像匹配算法进行改进,避免了构建高斯金字塔,提高了算法效率。然后利用机载惯性导航信息求解实时图与参考图之间的单应性矩阵,并对实时图进行模拟视角变换以此减小图像间视角差异,克服了现有的大视角图像匹配算法盲目多次的匹配计算,实现了大视角图像的快速匹配。实验结果表明,惯性信息辅助的大视角图像匹配算法与现有的快速仿射不变性匹配算法相比,匹配效率提高了至少2倍。
简介:摘要:轨道的几何参数的检测是列车能够安全运行的基本保障。但列车在低速连续运动时进行轨道几何参数检测的过程中受到了陀螺仪和加速度计累计误差的影响,使得最终检测结果的精确度就受到明显的影响而降低。本文采用机器视觉与惯性信息融合的轨道几何参数检测方法以解决上述问题,在轨道几何参数检测的时候先将多个传感器融合在一起,然后再通过卡尔曼滤波算法对机器视觉检测和惯性信息进行融合,提高了轨道几何参数检测结果的精度,最后在通过相应的测量平台对机器视觉与惯性信息融合的轨道几何参数检测进行相应的试验验证,结果表明本检测方法的测量精度比常规的惯性测量精度高 5倍左右。