简介:运用Furstenberg族的语言,探讨拓扑乘积系统(X×X,T×T)的初值敏感性,得到了若干个基本的结论.
简介:设Gl和岛是两个连通图,则G1和G2的Kronecker积GIXG2定义如下:V(G1×G2)=V(G1)×V(G2),E(G1×G2)=((ul,vl)(u2,u2):ulu2∈E(G1),ulu2∈.E(G2)).我们证明了G×Kn(n〉4)超连通图当且仅当k(G)n〉6(G)(n-1),其中G是任意的连通图,Kn是n阶完全图.进一步我们证明了对任意阶至少为3的连通图G,如果圪(G)=δ(G),则G×Kn(n〉3)超连通图.这个结果加强了郭利涛等人的结果.
简介:研究了调和Dirichlet空间上调和符号的小Hankel算子的乘积,给出了此类小Hankel算子交换性和乘积为零的完全刻画.
简介:Jacobi算子是Sturm-Liouville算子的离散化,通过对无穷维Jacobi算子的特征值的性质进行探讨,得出了无穷维Jacobi算子的特征值对其系数具有连续依赖性的结论,并给出了严格的数学证明.