简介:摘要:当今互联网中的数据样本的数量、种类、规模和复杂性的呈现爆炸式增长,同时每个端口以及服务器上需要进行检测的的网络流量的规模也大大提高。虽然目前的网络流量跨多个维度并具有很多属性,但可以提取用作异常流量检测的属性不多,因此,需要把数据集中蕴含的信息价值较大的属性筛选出来进行异常流量检测。基于以上特点,本文提出了改进的 K-Means算法,对原始 K-Means算法初始质心的选择方法进行优化,使得算法可以进行更方便迅速的初始簇的选择,来大大降低迭代时间。由于一般离群点检测模型的准确率较低,本文还使用了关联规则挖掘算法,来从无异常数据的网络流量样本中筛选出纯净网络流量的特征属性,再根据这些特征对网络流量进行离群点检测。
简介:考虑ATM交易过程当中产生的一系列参数,如交易量、交易成功率和响应时间等,对交易状态特征进行分析并建立了异常检测模型。针对成功率与响应时间2个参数,利用聚类算法将数据点划分为正常点、疑似异常点、异常点3大类。对于疑似的异常点,再根据其时间序列周围点的分布情况确定是否确实为异常点;对于交易量参数,首先通过LOF局部离群因子对离群点进行识别,再结合交易量随时间的移动均线及标准差加以辅助筛选,得到初步的疑似异常点,进一步通过与不同天同一时刻数据进行比较,最终确定是否为异常点。根据上述模型,本文将异常情况划分为3个预警等级,并对重大故障情况进行预测。
简介:摘要针对目前电网工控系统在运行过程中存在的安全威胁,本文对电网工控系统的异常检测技术进行了深入研究,并设计了一个电网工控系统异常检测实验平台进行验证。实验平台利用大数据技术采集工控系统中的设备日志、系统服务器的运行情况和流量信息,对日志信息采用基于规则库的方法检测设备异常,对系统运行情况和系统流量信息采用机器学习中的非监督学习算法,分析系统是否存在异常,并推测产生异常的原因。实验表明本文提出的异常检测方法可以及时发现电网工控系统中的异常,避免安全事件的发生。