学科分类
/ 25
500 个结果
  • 简介:在图形变化中有一种伸缩变换,它不但会改变有关点的坐标、曲线的方程,而且还会使一些几何特征量有所改变.但伸缩变换也有它自身的特点,若能抓住不变量和变换规律,能使一些问题的难度降低.本文着重探讨利用椭圆和圆之间的伸缩变换关系解决与椭圆有关的问题.

  • 标签: 伸缩变换 椭圆 应用 图形变化 变换关系 特征量
  • 简介:文章运用仿射变换的某些不变性质,将圆的某些性质和结论推广到椭圆,并加以证明,最后举例说明其应用。这是利用高等数学解决初等数学的一种方法展示。

  • 标签: 仿射变换 证明 性质
  • 简介:仿射变换是几何中一个重要变换,它是从运动变换到射影变换的桥梁.灵活地运用仿射变换,能使一些初等几何问题由繁到简.论文中,应用仿射不变性和不变量解决一般椭圆的有关仿射性质的命题,使仿射几何的知识和思想方法体现于解决初等几何问题中.

  • 标签: 仿射变换 不变性 不变量 椭圆
  • 简介:证明了夹住椭圆薄膜的整个边界不是使薄膜的椭圆性成立的必要条件.特别地,给出了两类边界条件.分别叫做部分自由边界条件和共轭边界条件,它们使得椭圆薄膜具有椭圆性但其边界没有被完全夹住.这些结果纠正了Slicaru在下面的文章中所犯的错误:Ontheellipticityofthemiddlesurfaceofashell,C.R.Acad.Sci.Paris,t.322.Serie,p.97-100.1996.最后,通过例子说明,当椭圆薄膜的边界不限制任何条件时,使应变能有限的位移向量空间可非常大.

  • 标签: 薄膜 椭圆性 Bochner技巧
  • 简介:平时,你认直观察过玻璃杯吗?从不同的角度来看,玻璃杯口会有不同的形状。如果你是横着拿,正看杯口.它就是个圆形。如果把玻璃杯口慢慢倾斜,做出要喝水的动作,那么圆的上、下就会越来越扁。这个新的形状就是“椭圆”。

  • 标签: 椭圆 玻璃杯 形状
  • 简介:我们生活中随处可见椭圆。倾斜的杯口、人脸的形状……就连八大行星绕太阳运转的轨道都是椭圆哦!

  • 标签: 椭圆 制造 小学 数学教学
  • 简介:古希腊有一位数学家发现,通过切割圆锥的方法可以很容易地做出一些重要的数学曲线。下面是4种最重要的曲线的圆锥截线做法.

  • 标签: 曲线 椭圆 圆锥截线 数学家 古希腊
  • 简介:作图问题始终是几何学中吸引人的课题.学生在初中仅用圆规和直尺已经能作许多图形:等分一条线段或一个角,经过一点作一条直线的垂线,经过圆上(或圆外)一点,作圆的切线等等.到了高中学习了椭圆,学生自然会想:“仅用圆规和直尺,经过椭圆上(或椭圆外)一点如何作椭圆的切线?”

  • 标签: 椭圆 切线 光学性质 作图问题 高中学习 几何学
  • 简介:椭圆是圆锥曲线的重点内容,高考主要考查椭圆的概念和性质,直线与椭圆的位置关系等,题型选择、填空、解答均有,选择、填空题主要考查椭圆的标准方程及几何性质等基础知识、基本技能和基本方法的运用;解答题以椭圆为载体,重点考查求椭圆的方程和直线与椭圆的位置关系等.

  • 标签: 椭圆问题 位置关系 几何性质 标准方程 圆锥曲线 题型选择
  • 简介:涉及本专题知识的高考命题热点是:①椭圆定义,如1999年全国卷第(15)题,2002年京皖第(22)题,等;②几何性质及基本量的相互关系,如2000年京皖卷第(9)题,2001年全国卷第7题,等;③已知椭圆方程求几何量,如1998年全国卷理第(2)题,2001年京皖卷第(14题),2002年

  • 标签: 高中 数学教学 教学参考 椭圆 复习指导 解题
  • 简介:一、椭圆中的定点问题例1(2018届高三“荆、荆、襄、宜四地七校考试联盟”10月联考数学)已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(-2,0),B(2,0),C1,3/2三点。

  • 标签: 椭圆 追踪 定点问题 坐标原点 坐标轴 数学
  • 简介:<正>在同一数学系统下,把所讨论的问题中的有关命题或对象的表现形式做可逆的逻辑改变叫等价变换。具体途径可以对命题的局部进行等价转化,也可以对命题的叙述(条件、结论)方式进行转化,以及变换命题的所有的领域。它是中学里一种重要的教学方法,即把数学中待解决或未解决的问题,通过某种转化过程,归结到某个(或某些)已经解决或者比较容易解决的问题,最终可得原问题解的方法。利用等价变换解决问题的思维结构框图为:

  • 标签: 等价变换 等价转化 教学方法 研究方法 未解决的问题 几何方法
  • 简介:更换下列各词中的词首,使它成为另一个新的单词,但所写出的答案必须要有意义。(各题的答案可能不只一个)

  • 标签: 词首 更换 答案 单词 变换 意义
  • 简介:在泰山版小学信息技术第三册(上)的内容中,提及利用系统的“画图”程序,从一幅图中编辑裁取出一个椭圆形的图片。教材只是用二个图片进行对比,说明图片经过修改能得到椭圆形的效果,但没有相应的编辑方法。这个学习内容,可以说既有趣又实用,然而“画图”程序并没有提供椭圆裁剪的功能,教材也没有提供使用的方法,

  • 标签: 画图 裁剪 椭圆 编辑方法 信息技术 学习内容
  • 简介:圆锥曲线中的范围问题,是指确定某个变量的范围(如离心率、斜率、截距,点的坐标等),使得问题中给定的几何图形具有某种几何性质或满足某种位置(数量)关系.由于这类问题内涵丰富且极具综合性,因而倍受命题者的青睐.本文以椭圆为例,对这类问题的探求谈一点浅见.

  • 标签: 范围问题 探求 椭圆 圆锥曲线 几何性质 几何图形
  • 简介:椭圆的学习中,我们经常会遇到求轨迹的问题。解决有关椭圆的轨迹问题主要有两种思路:(1)可先设动点的坐标为(x,y),然后根据已知的等量关系列出等式,再化简等式得到对应的轨迹方程;(2)首先分析图形中的几何关系,然后设出相应的椭圆的标准方程,求出a,b的值即可求出轨迹方程。

  • 标签: 轨迹问题 椭圆 轨迹方程 等量关系 标准方程 等式