简介:摘要本文对多目标粒子群算法的原理和数学模型做了基础记述,然后对多目标粒子群算法做了仿真测试,并使用加速因子对其线性变化进行了优化,这不仅保证了粒子群算法初步搜索时能在比较大的范围内迅速找到自身最优位置(pbest),而且利用加速因子的权重变比变化促使后期粒子群进行严格的局部搜索以便于去找到gbest位置也就是全局最优位置,使其集中向Pareto最优前沿聚集。使得在仿真结果中使用拥挤距离删除后得到的图形的最优前沿更加均匀平滑。最后利用前面所介绍的粒子群算法去解决环境经济调度优化问题,介绍环境经济调度原理以及其数学模型,在其多个不等式和等式约束下做了仿真测试,得到的数据与文献做了详细对比,表明粒子群算法在解决环境经济调度的问题中具有很大的可行性和有效性。