简介:摘要:近几年社会内卷现象日益严重,随着各类与高数有关考试考试难度变大,定积分的证明也是这几类考试中“常客”此类题目立足于高数基础而又构思巧妙关联性强大,往往得分不甚理想。笔者试图找到一类这种问题证明的通法,使得这类问题从本质上得以顺利解决,这类问题往往依赖于两个基本的定积分定理。
简介:引入数值函数关于睇值函数的R-S积分,研究了此类积分的性质及向量值R—S积分存在的几个充分条件,并给出了积分的收敛定理.
简介:在复变函数中,根据柯西—古萨定理,若f(Z)=u(x,y)+iv(x,y)解析,则积分∫_гf(z)dz=∫_гudx-vdy+i∫_гvdx+udy(1)与路径无关(本文中函数的解析性和曲线积分的路径无关性,都是对一定区域而言的,以下不再重复声明),从而,曲线积分∫_гudx-vdy=Re∫_гf(z)dz(2)∫_гvdx+udy=Im∫_гf(z)dz(3)都与路径无关。与路径无关的曲线积分和解析函数的积分是否有一定的内在联系呢?(2)和(3)式表明至少有一些与路径无关的曲线积分,可以用解析函数的积分表出。本文讨论了曲线积分