简介:证明了转移函数是l∞的一个子空C1上的正的压缩C0半群,其极小生成元恰好是Markov积分算子半群的生成元在C1中的部分;Markov积分算子半群的生成元稠定的充分必要条件是q-矩阵Q一致有界;同时转移函数是Feller-Reuter-Riley的充要条件是Markov积分算子半群的生成元在c0中的部分产生一个强连续半群.最后,在序Banach空间给出了增加的压缩积分算子半群的生成定理.
简介:引入独立参量,应用权函数的方法及实分析技巧,建立齐次与非齐次核两类Hilbert型积分不等式的等价联系,定义了等价的Hilbert型积分算子,还考虑了一些特殊核的范数.
简介:通过权函数方法和算子理论,定义了一个Hilbert型积分算子,并给出了它的范数.作为应用,建立了一个Hilbert型积分算子不等式和它的等价形式,并考虑了一些特殊结果.
简介:单个不可分的操作员g_(Ω,α),和Marcinkiewicz不可分的操作员μ_(Ω,α)被学习。操作符的内核象|y一样表现|~(-n-α)(α>0)接近起源,并且包含震荡的因素e~((i|y|)~(-β))(β>0)并且联合起来的范围S~(n-1)上的分发Ω。如果Ω与0