简介:提出两类联系函数,它们是阿基米德联系函数与Fréchet-Hoeffding界的融合,是正序簇.一类介于Fréchet-Hoeffding下界与一个特殊的联系函数之间;另一类介于Fréchet-Hoeffdingshang上界与一个特殊的联系函数之间.本文最后提出几个有待解决的问题.
简介:通过对一类独立随机变量序列所决定的Dirichlet级数的研究,得出一个结果:右半平面上有限级的随机Dirichlet级数几乎必然没有亏函数.
简介:本文利用Dirac函数方法,论证了只要函数的Laplace变换存在,其广义Fourier变换也必存在的重要结论,探讨了一类根式函数的广义Fourier变换,为修正长期以来人们对Fourier变换的偏见提供了理论依据和实例佐证。