学科分类
/ 25
500 个结果
  • 简介:线性离散系统机械振动的理论模型出发,根据力学系统与电学系统物理量间的对应关系[1],建立了模拟电路方程,并给出对应的模拟电路。

  • 标签: 线性 离散系统 振动 电模拟
  • 简介:摘要本文利用人工神经网络对两自由度线性振动系统进行了神经网络建模,并通过所建立的神经网络模型对该系统进行了预测。分别利用MATLAB和BP网络作为平台和训练工具。以两自由度悬臂梁的受迫振动为例,将一段时间内的激励力作为网络的输入参数,对应于该段时间内由振动产生的挠度作为网络的输出参数,然后利用BP网络进行训练。将网络模型预测结果与精确解进行对比,误差甚小。该结果表明所建立的神经网络模型合理、有效,可利用其对该类问题进行预测并应用于工程实践中。

  • 标签: 悬臂梁 神经网络 建模 振动
  • 简介:在舰艇振动较大的部位加装隔振系统是提高其自身声隐身性能最有效、最常用的方法之一,而混沌隔振方法可以很好地提高舰船线谱的隔振能力.以双层隔振系统为对象,建立两自由度非线性隔振系统的动力学模型,研究系统振动传递率特性及刚度对隔振效果的影响,采用数值积分方法分析不同激励幅值f1下系统随频率甜变化的分岔规律及非线性动力学行为.结果表明,当f1=12.0时,双层混沌隔振系统在1.11~1.18倍频区域出现混沌运动,该特征可以有效地降低结构噪声中的线谱成分,其整体隔振性能良好,验证了基于混沌理论的线谱控制方法的有效性.

  • 标签: 双层隔振系统 振动传递率 分岔 混沌
  • 简介:研究了非线性地基上正交异性矩形板的非线性固有热振动.采用常规的L-P法分析非线性地基上正交异性矩形板的非线性振动难以得到高精度的近似解,为此,先对该强非线性振动系统进行参数变换,将该强非线性振动系统转化为弱非线性振动系统.然后采用改进的L-P法进行求解,得到了强非线性振动系统的高精度近似解.此外,讨论了温度、地基特征参数、长宽比等因素对非线性地基上正交异性矩形板非线性振动固有频率的影响,得到了非线性地基上正交异性矩形板热振动频率随温度下降、地基特征参数变大、长宽比变大而增大的结论.

  • 标签: 非线性 地基 正交异性 热振动
  • 简介:应用增量谐波平衡法(IHB法)研究轴向运动梁横向非线性振动的内部共振.根据哈密顿原理建立非惯性参考系下轴向运动梁的横向振动微分方程,采用分离变量法分离时间变量和空间变量并利用Galerkin方法离散运动方程,再应用IHB法进行非线性振动分析,研究了在固有频率之比ω20/ω10接近于3:1情况下,外激励频率ω在ω10,ω20附近的具有内部共振的基谐波和次谐波响应.数值结果表明了IHB法是一个求解轴向运动体系非线性振动的非常有效的半解析、半数值的方法。

  • 标签: 轴向运动梁 非线性振动 增量谐波平衡法 内部共振 IHB法
  • 简介:矿井提升机在提升重物的过程中,由于质量和刚度的变化引起的系统固有频率十分缓慢的变化,因此考虑钢绳质量的矿井提升机系统是一个慢变参数振动系统.本文首先应用Kuzmak-Luke的多尺度法得到有一般非线性弹性力的强非线性振动系统解的周期性条件及用Jacobi椭圆函数表示的平方非线性振动和立方非线性振动的首阶渐近解.其次,将得到的结果分别应用于有平方、立方非线性弹性力的质量慢变的矿井提升系统.最后,将理论结果应用于某个矿井提升系统,应用算例的渐近解和数值解的比较表明本方法是有效的.

  • 标签: 非线性振动 矿井提升系统 多尺度法 慢变参数
  • 简介:研究了受谐波激励作用下悬索的非线性响应.基于索的拟静态假设,同时考虑悬索的几何非线性,首先利用Hamilton变分原理得到了悬索面内运动的非线性方程.然后把悬索的位移展开成固有模态的级数和.并利用Galerkin方法得到一个有限维的动力系统.再利用打靶法和延拓方法研究了悬索的周期运动.同时利用数值积分研究了超谐波共振区的一些非周期运动.最后讨论了激励幅值对悬索周期运动的影响.

  • 标签: 悬索 非线性振动 延拓方法 周期运动
  • 简介:采用有限元方法研究复合材料层合板结构在线性温度场作用下非线性振动特性.采用特征值屈曲分析方法,判断了结构在线性温度场作用下的临界屈曲分歧点,计算了结构的一阶弯曲固有频率,分析了铺层角度及铺层层数对结构临界屈曲温度分布和结构固有频率的影响,总结了其对复合材料层合板结构热振动特性影响的一般规律.这些结论对复合材料结构设计、抗热设计有一定的指导意义.

  • 标签: 复合材料层合板 非线性 振动分析 特征值屈曲分析 层合板结构 振动特性
  • 简介:针对含间隙的两自由度弹簧-质量分段振动系统的非线性模态开展了研究.首先,解析确定了分段保守自治系统发生同相和反相模态运动的初始位移,并采用加权平均方法确定了分段振动系统的模态频率,及其在位形空间模态曲线.然后,采用数值方法求解了系统的非线性模态曲线和模态频率,与本文获得的解析模态频率比较,说明本文的结果较等效模态频率有更好的精度.研究结果表明:在一定的参数条件下,系统的非线性模态个数会高于系统的自由度数目,系统可能发生内共振,而产生多余模态.多余模态运动是两振子同向振动中含有异向振动,说明多余模态是在同相模态运动和反相模态运动之间转换的模态.

  • 标签: 分段线性系统 非线性模态 模态频率 多余模态
  • 简介:研究了具有磁流变阻尼器悬架系统汽车的非线性动力学行为.汽车采用七自由度模型,磁流变阻尼器采用Sigmoid模型,路面激励为四轮有不同相位差的正弦激励.根据第二类Lagrange方程建立了汽车振动微分方程,采用四阶Runge—Kutta法进行数值仿真.以激励频率为参数分析汽车振动响应分岔过程,并通过时间历程图、相位图等分析了汽车在不同频率范围的振动特性,结果表明在特定的激励频率区间汽车发生混沌运动.分析结果可为基于磁流变阻尼器的车身振动控制提供理论指导.

  • 标签: 磁流变阻尼器 非线性振动 分岔 混沌
  • 简介:对旋转粘弹性夹层梁的非线性自由振动特性进行了分析.基于Kelvin—Voigt粘弹性本构关系和大挠度理论,建立了旋转粘弹性夹层梁的非线性自由振动方程,并使用Galerkin法将偏微分形式振动方程化为常微分振动方程.采用多重尺度法对非线性常微分振动方程进行求解,通过小参数同次幂系数相等获得微分方程组,并通过求解方程组及消除久期项来获得旋转粘弹性夹层梁非线性自由振动的一次近似解.用数值方法讨论了粘弹性夹层厚度、转速和轮毂半径对梁固有频率的影响.结果表明:固有频率随转速增大而增大,随夹层厚度增大而减小,随轮毂半径的增大而增大.

  • 标签: 旋转粘弹性夹层梁 Kelvin—Voigt 非线性振动 多重尺度法 近似解 固有频率
  • 简介:基于大变形理论建立功能梯度材料(FGM)梁运动方程,将梁的横向位移假定为时间函数和梁线性模态乘积之和,利用伽辽金方法离散为非线性常微分方程组;然后,运用等效线性化方法求得随机激励作用下简支约束的功能梯度材料梁均方位移,与NewMark法和蒙特卡罗方法获得的结果对比,验证该等效线性化方法的可靠性.最后讨论材料梯度指数、激励强度和梁长细比对功能梯度材料梁振动响应的影响.

  • 标签: 功能梯度材料梁 等效线性化方法 随机响应 伽辽金方法
  • 简介:利用实验方法研究粘弹性传动带的非线性振动.实验装置中的粘弹性传动带是同步带,通过伺服电机进行驱动,当电动机转速在某一恒定值上下变动时,带中的张紧力也会呈现周期性变化.通过改变传动带中张紧力的频率和幅值,得到了粘弹性传动带的频率响应曲线和周期运动、倍周期运动以及混沌运动的波形图和相图.

  • 标签: 混沌运动 非线性振动 粘弹性传动带