简介:针对地球静止轨道空间碎片清除需求,开展了服务星通过绳索拖拽空间碎片离轨多体动力学与控制仿真研究.分析了在轨拖拽期间系统拓扑构型,采用递推方法推导了考虑地球J2摄动的服务星和空间碎片柔性多体动力学方程组,建立了基于集中参数法的绳索动力学模型,通过约束方程将绳索与服务星和空间碎片相连接,建立了服务星姿态控制力矩方程,最后形成了服务星在轨拖拽空间碎片期间柔性多体系统多体动力学方程.通过悬链线模型与本文采用的集中参数模型的比较验证了本文采用的柔性绳索模型的正确性,然后通过数值仿真分析了与服务星质量接近的空间碎片被拖动期间动力学特性,为这类航天器总体设计及空间碎片清除策略制定提供了参考依据.
简介:研究外部扰动力矩作用下航天器的混沌姿态运动,引入Deprit正则变量建立系统的Hamilton结构,应用Melnikov方法预测系统产生的稳定流形和不稳定流形的横截相交,得到系统产生混沌姿态运动的条件。研究表明:随着转子转动惯量的增加,引起系统出现混沌姿态运动的激励频率的范围逐渐减小。最后,对相空间轨线的数值模拟表明理论分析的可靠性。
简介:爱好航天知识的同学都知道,我国发射成功的“神舟四号”是宇宙飞船,美国不幸失事的“哥伦比亚号”是航天飞机,而俄罗斯著名的“和平号”则是宇宙空间站。可是,你知道这三种帮助人类遨游太空的神奇航天器有什么不同吗?
简介:使用Chebyshev-Gauss(CG)伪谱法研究带动量轮和推力器的欠驱动航天器姿态最优控制问题.基于欧拉姿态角和动量矩定理导出两类航天器姿态运动模型,采用Clenshaw-Curtis积分近似得到性能指标函数中的积分项,应用重心拉格朗日插值逼近状态变量和控制变量,将连续最优控制问题离散为具有代数约束的非线性规划(NLP)问题,通过序列二次规划(SQP)算法求解.数值仿真结果表明,对两类欠驱动航天器的姿态机动最优控制均能达到设计控制要求,得到的姿态最优曲线与验证得到的曲线几乎完全重叠.
简介:'无法进入的太平洋极点(Pacificpoleofinaccessibility)'又称作'尼莫点',方圆2300万平方千米的区域内全是海洋,连小岛都没有,这是全世界距离陆地最远之处。尼莫点最广为人知的作用,就是部分大型航天器返回地球表面的归宿。该点于1992年由加拿大测量工程学家卢卡泰拉发现。