简介:在研究环形激光陀螺的漂移时,许多文献仅采用Allan方差方法进行误差分析。Allan方差没有包含导航用的“零偏不稳定性”项,而实际导航受此项的影响很大,因此只能以经典方差来衡量陀螺的性能,而把Allan方差仅作为一种辅助手段。通常文献采用Allan方差方法分析时,其噪声在频域的表达式(功率谱密度)是建立在频率的不同幂次的基础上,变换成时域表达式得到各项方差。由于此功率谱密度存在不合理,导致诸多矛盾。文中指出这些矛盾,并以实验数据为证,说明这一分析方法不论是逻辑还是在讨论实验数据时都会产生不合理的结果。彻底的解决办法将见续文,它提出用各种阻尼振荡的频带之和作为噪声的功率谱密度。
简介:为提高光电平台的控制性能和稳定性,以平台反馈回路所用的光纤陀螺传感器为研究对象,对光纤陀螺角速率的历史输出、当前量测以及随机漂移进行融合补偿。采用双自回归模型确定了光纤陀螺时间序列输出的自回归多项式和光纤陀螺随机漂移的自回归关系。以陀螺当前输出为量测量,结合卡尔曼滤波算法将陀螺历史输出和历史随机漂移融合进状态方程,并进行随机漂移在线估计补偿。实验结果表明,光纤陀螺随机漂移的AR模型能达到90%拟合效果,经卡尔曼滤波补偿后随机漂移能降到1/10。该方法能很好地抑制光电平台三个框架轴光纤陀螺的随机漂移,补偿率为80%~90%。
简介:为了对微小型飞行器上的MIMU(微惯性测量单元)的随机漂移进行补偿,在比较了Mallat算法与átrous算法之后,基于小波变换与多尺度分析方法,提出了多尺度时间序列建模方法,它充分利用了átrous算法的快速性与时间平移不变性,将MEMS陀螺仪随机漂移进行多尺度分解。对各尺度上分解得到的信号进行重建,并对重建得到的各个信号进行时间序列建模。将各尺度时间序列模型的预测输出的和作为陀螺仪的随机噪声估计,对陀螺仪的随机漂移进行补偿。最后的实际数据建模表明该建模方法运算量小、建模速度快、精度高、模型适用性强,有很强的实际应用价值。
简介:线振动MEMS陀螺在大载荷条件下,驱动轴与检测轴的谐振频率会发生漂移,频差随载荷变大。这类型振动陀螺为了提高灵敏度往往将两个振动轴的谐振频率设计得尽量靠近,但当角速率载荷较大时,两个振动轴的谐振频率将发生分裂漂移,彼此互相远离。漂移量与向心加速度无关,近似与角速率载荷的平方成正比,且两轴的谐振频率越靠近漂移越剧烈。考虑到Coriolis效应的弹簧质量块二维振动数学模型可定量描述该现象,表明此现象为线振动陀螺Coriolis效应的一部分。理论分析、仿真研究和实验数据的不同角度对这种频率漂移特性的分析结果吻合良好,为进一步结构优化奠定了理论基础。
简介:为了预测某导弹陀螺漂移趋势,以该陀螺漂移角速度时间序列为对象,建立了基于支持向量回归机的预测模型。针对该预测模型的特点,提出了支持向量预选取的模型优化方法。基于ε不敏感损失函数的支持向量回归机具有稀疏性,其结构由支持向量决定。因此从训练样本集中预选出有可能成为支持向量的样本,精简样本规模是提高该类支持向量回归机训练和预测效率的有效方法。针对该类支持向量回归机从分类和回归两个角度分析了支持向量的几何特征,提出了核函数空间免疫聚类的支持向量预选取方法并用于某导弹陀螺漂移预测模型的数据预处理。仿真结果表明优化后的预测模型运算量小、建模速度快,精度高。
简介:在我的故乡,陀螺不叫陀螺,叫作“冰尜(gá)儿”,这一俗名的来历,早已无从考证。顾名思义,冰聚儿——冰上的小家伙。较之斯斯文文的陀螺来,我觉得冰象儿自有它的贴切与亲切处。