简介:讨论Curto-Fialkow所给出的四阶截断复矩问题,即给一个复数序列γ≡γ~((4)):γ_(00),γ_(0)1,γ_(10),γ_(02),γ_(11),γ_(20),γ_(03),γ_(12),γ_(21),γ_(30),γ_(04),γ_(13),γ_(22),γ_(31),γ_(40),其中γ_(00)〉0,γ_(ij)=y_(ji),找到一个正的Borel测度使得γ_(ij)=∫-izz~jdμ(0≤i+j≤4)成立;得到了四阶非奇异截断复矩矩阵M(2)的平坦延拓存在的充分必要条件及在特殊情况下的解,并举例进行了验证.
简介:针对噪声同时依赖于状态和控制的It8型离散随机奇异系统,讨论其在有限时域内的非零和博弈问题.首先,讨论了单人博弈问题(离散随机奇异系统最优控制问题),即双人博弈的特殊情形,借鉴连续随机奇异系统的相关研究,利用配方法,得到了离散随机奇异系统单人博弈最优策略存在的充分条件等价于相应的差分方程存在解.在此基础上,通过转换方法,由单人博弈推广到两人博弈,得到了有限时间离散随机奇异系统非零和博弈问题的均衡解.该均衡解存在的充分条件等价于其相应耦合Riccati差分方程存在解,并给出了最优策略及最优值的表达式.