学科分类
/ 25
500 个结果
  • 简介:PriorityorderedBPneuralnetworkandtheapplicationforspeakeridentification;ProbingmodificationofBPneuralnetworklearning-rate;Real-timeoptimalexcitationcontrollerusingneuralnetwork;ResearchonthemodelingoftheaxialloaddistributioncoefficientofcylindricalgearsingearCADbasedonANN;Short-termsystemmarginalpriceforecastingwithhybridmodule;StudyonautomaticcreatingmethodofpublictransportationdispatchingformbasedonBPneuralnetwork。

  • 标签: BP神经网络 发话人识别 应用 CAD 价格预测
  • 简介:回顾了人工神经网络的发展史,分析了BP神经网络的结构,对BP神经网络在函数逼近、模式识别、分类应用、数据压缩等方面的应用进行了综述.

  • 标签: BP神经网络 应用 结构 综述
  • 简介:研究了BP神经网络的收敛问题。基于随机理论,提出了解决网络收敛性问题的随机优选法。该方法不仅在任何条件下都能得到问题的具有一定精度的解答,而且收敛速度很快。

  • 标签: 神经网络 收敛性 优选法 随机性
  • 简介:摘要:BP神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络

  • 标签:
  • 简介:本文针对标准BP算法的不足给出了改进算法——ScaledConjugateGradient(SCG算法),利用Matlab语言编制了BP网络的应用实例仿真程序。结果表明SCG算法的学习收敛速度大大地优于标准BP算法。

  • 标签: BP算法 神经网 SCG算法
  • 简介:摘要::为尽早发现桥梁的损伤和破坏,简化桥梁健康监测工作,提出新的桥梁荷载识别方法。基于有限元软件Midas Civil建立的三跨连续箱梁桥的三维有限元分析模型,进行给定汽车荷载作用下的响应分析。得出结论:网络模型能准确预测数据,平均相对误差能控制在1%内,能较好地预测实际桥梁 的荷载位置。

  • 标签: BP神经网络 荷载识别 预测值
  • 简介:摘要基于BP模型的神经网络是一种用于前向多层神经网络的反传学习算法,目前为止应用最为广泛且最重要的一种训练前向神经网络的学习算法。本文详细介绍BP算法原理并剖析其性能不足的几个方面,简要介绍优化算法,对模型未来的发展方向进行展望。

  • 标签: BP模型 神经网络 梯度下降法
  • 简介:本文根据神经网络的基本原理,利用实测数据建立了用于大断面隧道收敛变形预测的BP神经网络模型。基于神经网络的预测模型具有预测精度高,使用方便灵活,适合于复杂系统的特点,是解决隧道变形预测问题的一种崭新途径。

  • 标签: 神经网络 预测 隧道变形
  • 简介:利用BP神经网络局部搜索快速性、自适应及自学习的优点,设计了基于BP神经网络的危机预警模型,突破传统的危机预警模式,有效克服了当前危机预警机制中缺乏智能化自我学习等缺陷,为研究智能化公共危机预警提供了一条可行的有效途径。

  • 标签: 人工神经网络 BP算法
  • 简介:为了进一步优化神经网络算法,提高网络神经算法的速率并提高其稳定性,就现有BP算法所存在的收敛速度慢以及容易陷入局部极小值的弊病,我们将进一步通过一般改进算法解决在神经网络结构优化过程中依然无法解决的问题。依据遗传算法的特征,进一步在经过改进的压缩映射遗传的基础上提出了BP神经网络优化方案。泛函分析中压缩映射原理的应用,一方面解决了困扰人们的BP神经网络算法所固有的缺点,显著地提高了神经网络算法的收敛速度,而且解决了BP神经在运行的过程中和网络连接权值初值的取值紧密相连的缺点。经过大量的计算我们得到如下数据:经过优化改进后,训练时间节约了8.3%,训练步数降低了近17.4%。经过大量的研究实验表明:经过改进后的BP神经网络算法取得了良好的效果,十分具有应用价值。

  • 标签: 改进BP算法 BP神经网络 压缩映射 优化 适应性
  • 简介:摘要:在现有的人工神经网络理论中 ,BP神经网络使用最为广泛。 BP网络 (Back-Propagation Network)训练网络权值的算法是后向传播学习算法 ,它是一种多层前向神经网络BP学习算法是人工智能专家 Rumel hart于 1986年创建的理论。现代模拟电路故障诊断技术中应用神经网络的基本上选择的都是 BP神经网络。本文基于 BP神经网络的模拟电路诊断展开论述。

  • 标签: BP神经网络 模拟电路 诊断
  • 简介:摘要本文提出了一种基于局部自动搜索和光谱匹配技术的训练样本纯化的BP网络分类方法。利用影像的空间信息在图像局部范围内自动搜索和选择最佳样区位置,再用光谱匹配对寻找到的最佳样区在光谱空间上进一步纯化。从空间和光谱两个角度对样区进行了纯化,使得训练样本更适合遥感图像分类的要求,最后利用BP网络对遥感图像进行分类。实验结果证明,原始遥感图像经过样区纯化算法处理后,目视判读效果和数值分析都表明提高了分类精度。

  • 标签: 局部搜索 光谱匹配 训练样本 BP分类 样区纯化
  • 简介:以某大坝沉降监测数据为例,利用Matlab软件的BP神经网络工具箱进行建模分析和预测。结果表明,滚动BP神经网络算法能较好地应用于大坝沉降数据的预测,具有良好的应用前景。

  • 标签: BP 神经网络 MATLAB 大坝 预测
  • 简介:针对径流量长期变化的因果关系复杂特性,常规的中长期水文预报模型又很难满足精度要求,提出了基于BP神经网络的来水量预测模型。结合实际径流数据,验证了模型的预报精度,可用来进行中长期水文预报。

  • 标签: 人工神经网络 BP模型 来水量 预测
  • 简介:以研究船舶下沉量问题为出发点,总结出近年比较流行的计算船舶下沉量的经验公式方法,并给出各种计算方法的局限和适用情况;根据神经网络的特点,选取适当的输入参数和输出参数,建立船舶下沉量预测模型,并进行对比分析提出进一步的研究方向.

  • 标签: 航道 下沉量 神经网络
  • 简介:目的:与经典测量理论相比,项目反应理论具有更多的优势,但由于项目反应理论模型的复杂性,进行参数估计时往往需要较大的被试样本;人工神经网络的出现为小样本被试估计项目反应理论的能力参数和项目参数提供了可能,文章的目的是通过神经网络的蒙特卡罗模拟研究寻找更精确的参数估计方法。方法:以项目反应理论的两参数模型为例,以MAB和RMSE为比较指标,通过模拟数据比较经典测量理论的通过率、点二列相关系数、平均得分作为神经网络的输入值与以经过转换的数值(IRT参数估计的初值)作为神经网络的输入值训练网络结果的差异,比较不同条件下MAB指标和RMSE指标的差异。结果:以通过率估计项目参数b与以bj=zj/rbj估计项目参数b存在差异;以点二列相关系数估计项目参数a与以aj=rbj/√1-r^2bj估计项目参数a存在差异;以平均得分估计能力参数θ与以ln[x/(m-x)]估计能力参数θ存在差异。结论:对于两参数项目反应模型,以通过率估计项目参数b比以bj=zj/rbj估计项目参数b误差更小,而以点二列相关系数估计项目参数a比以aj=rbj/√1-r^2bj估计项目参数a误差更大,以平均得分估计能力参数θ比以ln[x/(m-x)]估计能力参数θ误差更大。

  • 标签: 神经网络 项目反应理论 参数估计 蒙特卡罗
  • 简介:通过采用遗传算法优化神经网络初始权值的方法,将GA算法与BP神经网络有机结合,应用于海底底质分类。基于多波束测深系统获取的反向散射强度数据,应用改进的BP神经网络分类方法,实现对海底基岩、砾石、砂、细砂和泥等底质类型的快速、准确识别。通过实验比较,GA-BP神经网络分类精度明显高于BP神经网络,证明了该方法的有效性和可靠性。

  • 标签: 底质分类 BP神经网络 遗传算法 多波束测深系统 反向散射强度
  • 简介:BP人工神经网络是摸拟人脑机理和功能的一种新型计算机和人工智能技术,它在数据处理中可避免数据分析和建模中的困难,采用拟人化的方法进行处理,特别适用于不确定性和非结构化信息处理,因而对地质学中各种未知信息的预测有着较好的适用性。

  • 标签: BP人工神经网络 未知信息预测 地质学 应用