简介:Themotivationofdataminingishowtoextracteffectiveinformationfromhugedatainverylargedatabase.However,someredundantandirrelevantattributes,whichresultinlowperformanceandhighcomputingcomplexity,areincludedintheverylargedatabaseingeneral.So,FeatureSubsetSelection(FSS)becomesoneimportantissueinthefieldofdatamining.Inthisletter,anFSSmodelbasedonthefilterapproachisbuilt,whichusesthesimulatedannealinggeneticalgorithm.Experimentalresultsshowthatconvergenceandstabilityofthisalgorithmareadequatelyachieved.
简介:Inthisnotewecharacterizethegeometricfactureofa(μ,r,k)-FES.Namely,foraC~μtriangularin-terpolationschcmewithC~rvertexdata,anyangleofthemacrotrianglemustbedividedintoatleast(μ+1)/(r+1-μ)parts.
简介:Inapplicationsoflearningfromexamplestoreal-worldtasks,featuresubsetselectionisimportanttospeeduptrainingandtoimprovegeneralizationperformance.Ideally,aninductivealgorithmshouldusesubsetoffeaturesassmallaspossible.Inthispaperhowever,theauthorsshowthattheproblemofselectingtheminimumsubsetoffeaturesisNP-hard.Thepaperthenpresentsagreedyalgorithmforreaturesubsetselection.Theresultofrunningthegreedyalgorithmonhand-writtennumeralrecognitionproblemisalsogiven.
简介:Thispaperpresentsanovelapproachtofeaturesubsetselectionusinggeneticalgorithms.Thisapproachhastheabilitytoaccommodatemultiplecriteriasuchastheaccuracyandcostofclassificationintotheprocessoffeatureselectionandfindstheeffectivefeaturesubsetfortextureclassification.Onthebasisoftheeffectivefeaturesubsetselected,amethodisdescribedtoextracttheobjectswhicharehigherthantheirsurroundings,suchastreesorforest,inthecoloraerialimages.Themethodologypresentedinthispaperisillustratedbyitsapplicationtotheproblemoftreesextractionfromaerialimages.
简介:处理技术的计算机图象被用来在木头表面上完成缺点图象的特征抽取。由缺点的灰色的价值的计算。有用鉴别缺点被完成了的三个特征数据。实验显示那这样对木头表面上的缺点的自动化识别有效。
简介:Theanalysisoftheradiatednoiseofvesselsgiveninthispapershowssomestrongsuperposedlinecomponentsinlowfrequencyspeetrumbelow100Hzoccurringatdiscretefrequencieswhichcorrespondwiththerotationspeedofpropellershaft,orpropellerbladefrequency,ortheirharmonicfre-quencies.sincethelinecomponentsreflectpropeller'workingcharacteristics,thepropller'sfeaturescanbeextracteddirectlyfromlow-frequencylinecom-ponentsinadditiontodemodulatedlinecomponent.Sotherearetwowaystoextractthefeatures,oneisdirectway,theotherisdemodulationway.Detec-tionperformanceofthelinecomponentinbackground-noiseisdiscussedinthispaper.ThesignallevelisdefinedasthedifrerencebetweenthePDF's(ProbabilityDensityFunction)meanofthepeakofthelinecomponentandPDF'smeanorthebackground-noise.Indircetwaythesignallevelofthelinecomponentisproportionaltothesignalnoiseratio(S/N).Indemodulationwaythesignallevelofdemodulatedlinecomponent
简介:IntroductionDuringthelasttwodecadestherehavebeenremarkabledevelopmentsinEnglishlanguageteachinginChina.Withanever-increasingemphasisbeingputonthecommunicativecompetenceofthelearners,variousmethodsandtechniqueshavebeentriedtoimprovethestudents’abilitytocommunicateinEnglish.ThisarticlelooksatthevalueofusingWesternfeaturefilmstohelpstudentsdevelopthiscommunicativecompetence.
简介:
简介:WegiveanintroductionforthebackgroundandmotivationoftheIntegratedPhotonics:ChallengesandPerspectivesfeature.Averybriefsummaryforthefiveinvitedreviewarticlescollectedinthisfeatureissueisalsogiven.
简介:Translationinitiationsites(TISs)areimportantsignalsincDNAsequences.InmanypreviousattemptstopredictTISsincDNAsequences,threemajorfactorsaffectthepredictionperformance:thenatureofthecDNAsequencesets,therelevantfeaturesselected,andtheclassificationmethodsused.Inthispaper,weexaminedifferentapproachestoselectandintegraterelevantfeaturesforTISprediction.Thetopselectedsignificantfeaturesincludethefeaturesfromthepositionweightmatrixandthepropensitymatrix,thenumberofnucleotideCinthesequencedownstreamATG,thenumberofdownstreamstopcodons,thenumberofupstreamATGs,andthenumberofsomeaminoacids,suchasaminoacidsAandD.Withthenumericaldatageneratedfromthesefeatures,differentclassificationmethods,includingdecisiontree,naiveBayes,andsupportvectormachine,wereappliedtothreeindependentsequencesets.Theidentifiedsignificantfeatureswerefoundtobebiologicallymeaningful,whiletheexperimentsshowedpromisingresults.
简介:Traditionalsequenceanalysisdependsonsequencealignment.Inthisstudy,weanalyzedvariousfunctionalregionsofthehumangenomebasedonsequencefeatures,includingwordfrequency,dinucleotiderelativeabundance,andbase-basecorrelation.Weanalyzedthehumanchromosome22andclassifiedtheupstream,exon,intron,downstream,andintergenicregionsbyprincipalcomponentanalysisanddiscriminantanalysisofthesefeatures.Theresultsshowthatwecouldclassifythefunctionalregionsofgenomebasedonsequencefeatureanddiscriminantanalysis.
简介:Inthispaper,afacialfeatureextractingmethodisproposedtotransformthree-dimension(3D)headimagesofinfantswithdeformationalplagiocephalyforassessmentofasymmetry.Thefeaturesof3Dpointcloudsofaninfant’scraniumcanbeidentifiedbylocalfeatureanalysisandatwo-phasek-meansclassificationalgorithm.The3Dimagesofinfantswithasymmetriccraniumcanthenbealignedtothesamepose.Themirroredheadmodelobtainedfromthesymmetryplaneiscomparedwiththeoriginalmodelforthemeasurementofasymmetry.Numericaldataofthecranialvolumecanbereviewedbyapediatriciantoadjustthetreatmentplan.Thesystemcanalsobeusedtodemonstratethetreatmentprogress.
简介:Alotof3Dshapedescriptorsfor3Dshaperetrievalhavebeenpresentedsofar.Thispaperproposesanewmechanism,whichemploysseveralexistingglobalandlocal3Dshapedescriptorsasinput.Withthesparsetheory,somedescriptorswhichplaythemostimportantroleinmeasuringsimilaritybetweenquerymodelandthemodelinthedatasetareselectedautomaticallyandanaffinitymatrixisconstructed.Spectralclusteringmethodcanbeimplementedtothisaffinitymatrix.Spectralembeddingofthisaffinitymatrixcanbeappliedtoretrieval,whichintegratingalmostalltheadvantagesofselecteddescriptors.Inordertoverifytheperformanceofourapproach,weperformexperimentalcomparisonsonPrincetonShapeBenchmarkdatabase.Testresultsshowthatourmethodisapose-oblivious,efficientandrobustnessmethodforeithercompleteorincompletemodels.