简介:Burn-in算法和AGREE算法是目前应用广泛的基于实际河网高程强迫修正的河网提取算法.该算法能有效提取出同真实河网高拟合度的模拟河网,但某些情况下,所提取的河网会产生“断裂”现象.河网“断裂”现象的产生在于实际河网栅格高程“高估”和“低估”所引起的局部流向计算错误,其中所有“低估”类以及大部分“高估”类影响都是可以通过填洼等方法加以消除的,即不会产生“断裂”问题.真正产生“断裂”的原因是:存在“高估”类河网栅格且“高估”所带来的影响无法通过填洼等操作加以消除.基于此,对Burn-in算法和AGREE算法进行修正,提出一种消除“高估”类影响的解决方案,从根本上解决河网“断裂”问题,实现程序自动化处理.渭河流域实例应用表明,改进算法可有效解决模拟河网“断裂”问题,且适用于多种基于高程的强迫修正算法.
简介:介绍了层析成像技术的图像重建算法,并从正向问题数学模型的简化和反向问题数学模型的映射结构的角度比较了各种算法的特点和优劣。研究表明:用本质是线性算法的各种变换方法重建图像存在严重失真,而卷积滤波的引入可以使变换方法的重建效果有所改善;基于导数搜索的迭代算法对初始值依赖性强、收敛速度慢并且容易陷入局部最优解;基于Fourier变换的方法具有本质的局限性;小波变换则可以同时刻画图像时域和频域的细节特征;有限元法通过重建对象像素的智能划分可以简化正问题的复杂性;而具有物理背景的蒙特卡罗法、模拟退火法、遗传算法、粒子滤波法及神经网络法更适合于复杂且非线性的图像重建;智能化、仿生化、并行化以及各种算法的融合是层析成像图像重建算法的发展趋势。