简介:TheexistenceofatleasttwohomoclinicorbitsforLagrangiansystem(LS)isproved,wheretheLagrangianL(t,x,y)=1/2∑aij(x)yiyi-V(t1x),inwhichthepotentialV(t,x)isgloballysurperquadraticinxandT-periodicint.TheConcentration-CompactnessLemmaandMinimaxargumentareusedtoprovetheexistences.
简介:<正>Inthispaper,wemakeacompletestudyoftheunfoldingofaquadraticintegrablesystemwithahomoclinicloop.MakingaPoincaretransformationandusingsomenewtechniquestoestimatethenumberofzerosofAbelianintegrals,weobtainthecompletebifurcationdiagramandallphaseportraitsofsystemscorrespondingtodifferentregionsintheparameterspace.Inparticular,weprovethattwoisthemaximalnumberoflimitcyclesbifurcatingfromthesystemunderquadraticnon-conservativeperturbations.
简介:有轨道的一条退化homoclinic轨道的分叉在高维的系统扭动被学习。由在homoclinic轨道附近建立一个本地坐标系统和一张Poincar茅地图,1条鈥揾omoclinic轨道和1鈥損eriodic的存在和唯一转被给。另外考虑了是2鈥揾omoclinic轨道和2鈥損eriodic轨道的存在。在additon,相应分叉表面被给。关键词轨道扭动-Homoclinic分叉-Poincar茅地图先生(2000)题目分类34C23-中国的国家自然科学基础支持的37C29工程(没有:10171044),江苏省的自然科学基础(没有:BK2001024),为中国的教育部的大学关键教师的基础
简介:这份报纸认为稳定的Swift-Hohenberg方程是$$u“”+\beta^2u“+u^3-u=用动态途径的0.$$,作者证明它为每$\beta\in\left有一个homoclinic答案[{\sqrt[4]{8}-\varepsilon_0,\sqrt[4]{8}}\right)$,在0是一个小积极常数的地方。这稍微补充Santra和Weis结果[Santra,S。并且魏,J.,第四份订单旅行的Homoclinic解决方案挥动方程,暹罗J。数学。肛门,41,2009,20382056],它声明它为各个承认一个homoclinic答案(0,0)在哪儿0=0.9342……
简介:SameexistenceandmultiplicityofhomoclinicorbitforsecondorderHamiltoniansystem¨↑x-a(t)x+Wx(t,x)=0aregivenbymeansofvariationalmethods,wherethepotentialV(t,x)=-1/2a(t)|s|^2+W(t,s)isquadraticinsatinfinityandsubquadraticinsatzero,andthefunctiona(t)satisfiesthegrowthconditionlimt→∞∫t…t+la(t)dt=+∞,A↓ι∈R^1.
简介:Thehomoclinicbifurcationsinfourdimensionalvectorfieldsareinvestigatedbysettingupalocalcoordinatesnearthehomoclinicorbit.Thishomoclinicorbitisnonprincipalinthemeaningsthatitspositivesemi-orbittakesorbitflipanditsunstablefoliationtakesinclinationflip.Theexistence,nonexistence,uniquenessandcoexistenceofthe1-homoclinicorbitandthe1-periodicorbitarestudied.Theexistenceofthetwofoldperiodicorbitandthree-foldperiodicorbitarealsoobtained.
简介:Ageneralizedhyperbolicperturbationmethodispresentedforhomoclinicsolutionsofstronglynonlinearautonomousoscillators,inwhichtheperturbationprocedureisimprovedforthosesystemswhoseexacthomoclinicgeneratingsolutionscannotbeexplicitlyderived.Thegeneralizedhyperbolicfunctionsareemployedasthebasisfunctionsinthepresentproceduretoextendthevalidityofthehyperbolicperturbationmethod.Severalstronglynonlinearoscillatorswithquadratic,cubic,andquarticnonlinearityarestudiedindetailtoillustratetheefficiencyandaccuracyofthepresentmethod.
简介:InthispaperwedevelopakindofdissipativediscreteschemeforthecomputationofhomoclinicorbitsnearTB-pointinHamiltoniansystems.Itisprovedbyusingcontinuationmethodthatwhenthedissipativetermanditscoefficientaresuitablychosen,thisschemepossessesdiscretehomoclinicorbits,whichapproximatethecontinuoushomoclinicorbitswithsecondorderaccuracyw.r.totime-stepsize.