简介:组G的Wielandt亚群,由w(G)表示了,是G的所有低于正常的亚群的normalizers的交叉。在这份报纸,作者为每整数i为最大的班G,为所有整数i的任何一个wi(G)=i(G)或wi(G)=i+1(G)的p组显示出那,并且为在有K1的G的每正常亚群K的w(G/K)=(G/K)。同时,为最大的班的常规p组的一个必要、足够的条件令人满意的w(G)=2(G)被给。最后,如果G是有基本z(G)的non-abelianp组,作者证明力量自守组PAut(G)是基本abelianp组?\mho1(G)\zeta(G)\cap\mho_1(G)。
简介:LetGbeap-seriesgroupandΩbeacompactsubgroupofG.Letλ(x,r)andλ,(x,r)beA-belp-poissontypekernelandproducttypekernelOnΩrespectively.Inthispaperwediscusstheap-proximationpropertiesofsuchkernels,givetheestimate5oftheirmoments,obtainthedirectandin-verseapproximationtheorems.
简介:Acomparisonoftheadsorptionofbenzoicacidandp-nitrobenzoicacidonthenewhypercrosslinkedpolymericadsorbentAM-I,withthatbymacroporousAmberliteXAD-4,includingtheequilibriumadsorptionisotherms,thedynamicadsorptionbehaviorsthroughcolumnandtheadsorptionthermodynamicswerestudied.ResultsshowthatFreundlichequationgivesafittingadsorptionisotherm.ThespecificsurfaceofAM-lisonly67%ofthatofAmberliteXAD-4,buttheadsorptioncapacitiesonAM-1aremuchhigherabout125%~166%thanthatonAmberliteXAD-4,whichiscontributedtothemicroporemechanismandpolarity.Thenegativevaluesoftheadsorptionenthalpyareindicativeofanexothermicprocess.Enthalpyandfreeenergychangesofadsorptionbothmanifestaphysic-sorptionprocess.Thenegativevaluesoftheadsorptionentropyindicatethattheadsorptioniswellconsistentwiththerestrictedmobilitiesandtheconfigurationsoftheadsorbedbenzoicacidmoleculesonthesurfaceofstudiedadsorbentswithsuperficialheterogeneity.Bothadsorbentswereusedinmini-columnexperimentsforadsorbingbenzoicacidexpectingtoelucidatethehigherbreakthroughadsorptioncapacityofthenewhypercrosslinkedpolymericadsorbentAM-1ascomparedwiththatofAmberliteXAD-4.
简介:Assumethateachcompletelyirrationalnoncommutativetorusisrealizedasaninductivelimitofcirclealgebras,andthatforacompletelyirrationalnoncommutativetorusAwofrankmthereareacompletelyirrationalnoncommutativetorusAρofrankmandapositiveintegerdsuchthattr(Aw)=1/d.tr(Aρ).ItisprovedthatthesetofallC^*-algebrasofsectionsoflocallytrivialC^*-algebrabundlesoverS^2withfibresAωhasagroupsturcture,denotedbyπ1^s(Aut(Aω)),whichisisomorphictoZifEd>1and{0}ifd>1.LetBcdbeacd-homogeneousC^*-algebraoverS^2×T^2ofwhichnonon-trivialmatrixalgebracanbefactoredout.ThesphericalnoncommutativetorusSρ^cdisdefinedbytwistingC^*(T2×Z^m-2)inBcd×C^*(Z^m-3)byatotallyskewmultiplierρonT^2×Z^m-2。ItisshownthatSρ^cd×Mρ∞isisomorphictoC(S^2)×C^*(T^2×Z^m-2,ρ)×Mcd(C)×Mρ∞ifandonlyifthesetofprimefactorsofcdisasubsetofthesetofprimefactorsofp.
简介:ThispapercontinuestheworkofD.MacHale,D.Flannery(Proc.R.Ir.Acad.81A,209—215;83A,189—196)andtheauthor(Proc.R.Ir.Acad,90A,57—62;J.SouthwestChinaNormalUniversity15,No.1,21.—28)onthetopicon“FinitegroupswithgivenAutomorphismgroup”.Thefollowingresultisproved:LetGbeafinitegroupwithAutGaSchmidtgroup.ThenGisisomorphictoS3orKlain4-group.,orDsuchthatAutD=InnD.DisaSchmidtgroupoforder2?p.S2(∈Syl2D)isanormalandspecialgroupexoeptasupersperspecialgroupwithoutcommutativegenerators.
简介:TheHuayuGroupiscomposedofonecoreenterprise,nineclosely-relatedenterprisesand16loosely-relatedenterprisesinAnhui,JiangsuandZhejiang.Itsbusinessincludesfinance,materials,knitwear,garmentsandeducation.AnhuiChuzhouHuayu(Group)Co.Ltd.—acoreenterpriseofHuayuGroup—isacomprehensiveenterprisegroup,integratingproduction,trade,scientificresearchanddevelopment.Ithasastaffof4,000,andeightfactoriesandfivecompaniesunderitsadministration.Majorproductsincludesixseriesyarn
简介:Itisprovedthatthereisnochaoticgroupactionsonanytopologicalspacewithfreearc.InthispaperthechaoticactionsofthegrouplikeG×F,whereFisafinitegroup,arestudied.Inparticular,underasuitableassumption,ifFisacyclicgroup,thenthetopologicalspacewhichadmitsachaoticactionofZ×Fmustadmitachatotichomeomorphism.Atopologicalspacewhichadmitsachaoticgroupactionbutadmitsnochaotichorneomorphismisconstructed.