简介:
简介:Epsilon波是致心律失常性右室心肌病的特征性心电图表现,发生机制是由于右室的部分心肌细胞萎缩、退化,被纤维或脂肪组织替代,右室病态的心肌细胞除极延迟,延迟的除极波即Epsilon波。但Epsilon波除见于致心律失常性右室心肌病以外,还可见于心脏结节病、先天性心脏病、右室心肌梗死、后壁心肌梗死以及其他右室受累的疾病。本文报道的一例食管癌患者经证实无右室心肌病变,其心电图上的Epsilon波考虑可能与右侧胸膜肥厚粘连、右侧液气胸,右心缘高密度影(疑为心包积液)有关,这些改变可以累及右室心外膜下的心肌细胞,使其发生除极延迟。
简介:李一心汽车行业的老人,摄影圈子的新人.对于汽车尤其是Wagon倩有独钟.热爱把每辆车最炫的一面展现给大家全新途观L的外观设计风格相对于原先的途观有了很大的改变.原来的老途观L给人一种中庸温婉的感觉.而这一代全新途观L则偏向男性化的刚毅的外观线条,看上去更硬朗、更健硕.它的前脸用了很长的镀铬条,拉长视觉上的效果.大灯的上沿和下沿用了类似的镀铬条,与中网平齐,形成一个很长很扁的前脸.加上发动机盖上突出的肌肉感线条,形成的整个前脸非常有力量感.车侧面,首先轮圈的造型变得更简洁、更有力量感.顶配车型更是搭载19英寸轮毂,比起原先的途观更显霸气.侧面腰线从车头一直贯穿到车尾,门把手和腰线则完全平齐,更显简洁明了的设计理念.同样车尾的特点也非常突出.尾门的宽度和车尾宽度的比例进行了重新的调整,在拉宽后举门的同时,边框的冗余量变得更窄.这样的好处有两个,一是车变得更简洁、更好看,二是实用性大大地增加.可以说整个全新途观L在外观的设计上是下足了功夫,在延续德系车稳重的设计风格的同时,加入了许多出挑的设计风格,使车显得更时髦,更符合年轻人的口味.我想全新途观L应该会是大卖的一款车吧.
简介:InthispaperL^p-L^qestimatesforthesolutionu(x,t)tothefollowingperturbedhigh-erorderhyperbolicequationareconsidered,(ρπ--a△)(ρπ--b△)u+V(x)u=O,x∈R^n,n≥6,ρ1eu(x,O)=O,ρ^3eu(x,O)=f(x),(j=O,1,2).WeassumethattheotentialV(x)andtheinitialdataf(x)arecompactlysupported,andV(x)issufficientlysmall,thenthesolutionu(x,t)oftheaboveproblemsatisfiesthesameL^p-L^qestimatesasthatoftheunperturbedproblem.
简介:<正>InthispaperitisprovedthatforallcompletelydistributivelatticesL.thecategoryofL-fuzzifyingtopologicalspacescanbewmbeddedinthecategoryofL-topologicalspaces(stratifiedChang-Goguenspaces)asasimultaneouslybireflectiveandbicoreflectivefullsubcategory.
简介:WeconstructaclassofintegrablegeneralizationofTodamechanicswithlong-rangeinteractions.ThesesystemsareassociatedwiththeloopalgebrasL(Cr)andL(Dr)inthesensethattheirLaxmatricescanberealizedintermsofthec=0representationsoftheaffineLiealgebrasCr(1)andDr(1)andtheinteractionspatterninvolvedbearsthetypicalcharactersofthecorrespondingrootsystems.WepresenttheequationsofmotionandtheHamiltonianstructure.Thesegeneralizedsystemscanbeidentifiedunambiguouslybyspecifyingtheunderlyingloopalgebratogetherwithanorderedpairofintegers(n,m).Itturnsoutthatdifferentsystemsassociatedwiththesameunderlyingloopalgebrabutwithdifferentpairsofintegers(n1,m1)and(n2,m2)withn2<n1andm2<m1canberelatedbyanestedHamiltonianreductionprocedure.Forallnontrivialgeneralizations,theextracoordinatesbesidesthestandardTodavariablesarePoissonnon-commute,andwheneithernorm≥3,thePoissonstructurefortheextracoordinatevariablesbecomessomeLiealgebra(i.e.theextravariablesappearlinearlyontheright-handsideofthePoissonbrackets).Inthequantumcase,suchgeneralizationswillbecomesystemswithnoncommutativevariableswithoutspoilingtheintegrability.