简介:Inthispaper,simultaneousuniformapproximationandmeanconvergenceofquasi-HermiteinterpolationanditsderivativebasedonthezerosofJacobipolynomialsareconsideredseparately.Thedegreesofthecorrespondingapproximationsarerespectivelygivenalso.Someknownresultsareimprovedaudextended.
简介:EllipticPDE-constrainedoptimalcontrolproblemswithL^1-controlcost(L^1-EOCP)areconsidered.TosolveL^1-EOCP,theprimal-dualactiveset(PDAS)method,whichisaspecialsemismoothNewton(SSN)method,usedtobeapriority.However,ingeneralsolvingNewtonequationsisexpensive.Motivatedbythesuccessofalternatingdirectionmethodofmultipliers(ADMM),weconsiderextendingtheADMMtoL^1-EOCP.TodiscretizeL^1-EOCP,thepiecewiselinearfiniteelement(FE)isconsidered.However,differentfromthefinitedimensionalL^1-norm,thediscretizedL^1-normdoesnothaveadecoupledform.Toovercomethisdifficulty,aneffectiveapproachisutilizingnodalquadratureformulastoapproximatelydiscretizetheL^1-normandL^2-norm.Itisprovedthattheseapproximationstepswillnotchangetheorderoferrorestimates.Tosolvethediscretizedproblem,aninexactheterogeneousADMM(ihADMM)isproposed.DifferentfromtheclassicalADMM,theihADMMadoptstwodifferentweightedinnerproductstodefinetheaugmentedLagrangianfunctionintwosubproblems,respectively.Benefitingfromsuchdifferentweightedtechniques,twosubproblemsofihADMMcanbeefficientlyimplemented.Furthermore,theoreticalresultsontheglobalconvergenceaswellastheiterationcomplexityresultso(1/k)forihADMMaregiven.Inordertoobtainmoreaccuratesolution,atwo-phasestrategyisalsopresented,inwhichtheprimal-dualactiveset(PDAS)methodisusedasapostprocessoroftheihADMM.Numericalresultsnotonlyconfirmerrorestimates,butalsoshowthattheihADMMandthetwo-phasestrategyarehighlyefficient.
简介:由在卡尔弗特和Gupta的非线性的accretivemappings的范围的和上使用不安理论,我们在答案u∈L~S的存在上学习抽象结果(包含p拉普拉斯算符操作员的非线性的边界价值问题的Ω),在此2≤s≤+∞,并且(2N)/(N+1)
L.魏和Z.的相应结果他。