简介:对具有重根的广义特征值问题,采用基于快速Fourier变换的方法进行求解,实现重根辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重根.数值算例表明,该方法可有效实现重根辨识,同时特征值的计算能达到较高精度.
简介:提出了一个新的四维自治类新混沌系统.首先在整数阶下分析了该系统的基本动力学特性.并利用数值仿真、功率谱分析了当参数固定时,分数阶新混沌系统随微分算子阶数变化时的动力学特性.研究表明:当微分算子阶数为0.85时,分数阶新系统随参数变化经短暂混沌和边界转折点分叉而进入混沌.针对一类结构部分未知分数阶混沌系统,基于Chebyshev正交函数神经网络,稳定性理论[14]和分数阶PI滑模面构造方法设计了一种新型的含有补偿器的自适应非线性观测器,实现了分数阶新混沌系统的投影同步.数值仿真验证了设计方法的有效性.
简介:研究了最新提出的超混沌吕系统的最优同步问题.利用哈密顿-雅可比-贝尔曼方程,对具有不确定参数的超混沌吕系统设计了最优同步的方案,分别得到了无限时间区间和有限时间区间上的最优控制器和参数控制律.数值仿真验证了理论分析的正确性.
简介:基于经典的Magnus级数方法提出了一个简单有效的四阶近似积分格式,用于求解一般非线性动力学系统.它是一种几何积分方法,能保持精确解的许多定性性质,并且该方法只包含二个或三个指数矩阵的乘积,避免了通常的Magnus级数方法涉及的复杂的交换子运算.数值算例显示该方法是有效的。
简介:研究了一类参数激励和外激励联合作用下四边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.