简介:LDA主题模型是文本挖掘领域的重要算法,同时在推荐系统当中也有不错的表现.通过LDA主题模型挖掘用户感兴趣的主题,是目前最常用的用户兴趣主题挖掘方法之一.为了提高LDA主题模型应用在推荐系统时的推荐质量,我们提出了一种基于负样本进行学习的方法negLDA.通过创造出负样本来学习用户对物品的负面预测评分,同时结合正样本学习得到的正面预测评分,从正反两个方面进行综合评测,从而更加精确地衡量出用户对物品的预测评分.通过在MoviesLens-100k、MovieLens-1M、FilmTrust这三个数据集上的实验,表明所提出的算法在精确率、召回率、AUC三个指标上相比传统算法均有一定改进.
简介:摘要:涉商典型领域案件的CPC检索策略推荐度受很多因素的影响,主要因素包括CPC分类号的细分程度、分类定义中的信息性参见、是否存在2000系列附加信息、CPC分类号下文献标引量的大小、是否既涉及技术又涉及规则、受审查员经验反馈。
简介:摘要:网络时代,在线学习资源日益丰富。面对大量的信息,如何准确地向学习者推荐他们感兴趣的内容,以避免陷入数字泥潭是个性化推荐领域需要研究的问题。本文分析了二图信息扩散推荐算法,并结合网络资源的标签属性,探讨了基于标签的三图学习资源个性化推荐算法的改进。该算法在保留有效性和简洁性的前提下,利用标签属性扩大了推荐资源的广度,对缓解网络稀缺引起的推荐信息不完整具有一定的参考意义。