学科分类
/ 1
3 个结果
  • 简介:针对短期家庭电力数据随机性强,数据维度低等问题,提出了一种基于长短期记忆循环神经网络(LSTM)的单变量短期家庭电力需求预测模型.实验表明,该模型能够准确反映以小时为单位的家庭电力需求趋势,且在不同家庭上的泛化性能优于传统的循环神经网络(RNN)和门控循环网络(GRU).

  • 标签: 短期家庭电力需求预测 单变量 长短期记忆循环神经网络 深度学习
  • 简介:短期光伏发电功率预测对维护电网安全稳定和协调资源利用具有重要意义,针对现有的神经网络法、小波分析法等单一预测模型预测精度提升有限的问题,引入集成学习的思想和方法,提出一种基于Stacking算法改进支持向量机(SVM)的短期光伏发电预测方法.该方法先使用多个不同的初级SVM对预测样本进行一次预测得到多个预测输出;然后对训练集进行聚类,使用与预测样本同类别的训练样本训练次级SVM;最后使用次级SVM对多个预测输出进行结合得到最终预测结果.经光伏发电系统的实际运行数据实验,结果表明本文提出的方法相较于单一预测模型精度有了明显提升.

  • 标签: 光伏发电 短期功率预测 Stacking算法 Kmeans算法 支持向量机
  • 简介:欧洲的汽车制造商未能达到其自定的增加新车燃油效率的目标。在90年代后期,汽车制造商同意将欧洲销售新车的二氧化碳排放降低。他们订下的目标是到2008年将二氧化硬排城水平降到140g/km。

  • 标签: 二氧化碳排放 汽车行业 发动机 汽车制造商 短期 优化