简介:研究一类非线性双曲方程utt-M∫Ω|u|2dx△u=|u|αu的初边值问题局部解的存在性和唯一性.利用Galerkin方法和改进的势井理论得到:当M(r)和α满足一定条件,且初值充分小时,方程存在局部解.
简介:Inthispaper,westudytheglobalasymptotiestabilityofthezerosolutionofageneralizedLienard'ssystem{x^.=φ(y)y^.=-f(x)φ(y)-g(x)byconstructinganewLiapunovfunction.Thesufficientandneoessaryconditionsforglobalasymptoticstabilityundergivenconditionsareobtained.
简介:利用迭合度理论的连续定理,讨论了一类中立型系统的正周期解的存在性.得到了正周期解存在的一些充分条件.
简介:利用单频GPS载波相位差分技术进行动态精密测量时,由于观测历元少,经典LAMBDA算法会出现法矩阵病态导致整周模糊度无法求解。针对这一问题研究了基于TIKHONOV正则化原理的改进LAMBDA算法。通过对双差观测方程系数矩阵进行奇异值分解选取正则化矩阵,改善了法矩阵的病态性,获得了更高精度的浮点解。利用均方误差矩阵替代协方差阵进行LAMBDA求解,提高了模糊度求解的速度和成功率。对连续100组5个历元实测数据计算表明:与原算法相比,改进LAMBDA算法求得的浮点模糊度偏差从36.48周减小到4.08周,搜索效率和成功率分别改进97.74%和100%。
简介:本文利用四元数矩阵的广义Frobenius范数建立一个关于四元数矩阵的实函数,并讨论了它的极值问题.然后在四元数矩阵方程AX-YB=C的解集合中导出了与给定矩阵的最佳逼近解的表达式.
简介:本文研究具Balakrishnan-Taylor阻尼的Kirchhoff方程初边值问题.利用Nakao不等式,得到了解的衰减性.