简介:本文对随机利率采用在原点反射的布朗运动以及负二项分布建模,具体以即时给付的综合人寿保险模型为研究对象,对寿险理论中的保费,年金以及责任准备金进行研究,并给出相应的表达式。
简介:本文讨论了牛曼-贝塞尔级数的共轭级数,建立了其部分和与相应的共轭Fourier三角级数的部分和之间的关系,同时结出了两个收敛定理。
简介:本文主要讨论整函数零点分布与分担值定理的联系,并运用新颖的方法证明几个有趣的定理。
简介:物理勘探中,需要计算含一阶贝塞尔函数的广义积分.一种传统的方法是在贝塞尔函数零点之间一次应用一般积分法则积分,最后求和,这种方法收敛比较慢.特别在贝塞尔函数中r值很大的时候.另一种应用广泛的方法是数字滤波技术.该法比第一种方法快.但要求核函数迅速衰减.本文给出了一种新的计算方法,能处理核函数衰减很慢且r很大的问题,方法简单,高效率.精度高.
简介:借助于超几何函数,在广义非中心X2分布级数形式密度函数表达式的基础上列出了两类具体椭球等高分布下的广义非中心X2分布密度函数的精确表达,并给出了详细的证明过程;同时计算了这两类具体椭球等高分布下的广义非中心X2分布对应高阶矩的形式,作为推论验证了非中心X2分布相关的结论.
简介:补充四元数线性变换下四元数正态分布的性质,给出四元数非中心X^2分布、t分布,F分布的定义,导出密度函数及其性质,并研究四元数正态分布条件下样本均值及方差的分布。
简介:2003年1月16日至21日,一批世界著名数学家云集莫斯科,参加一个名为“柯尔莫哥洛夫与当代数学(KolmogorovandContemporaryMathematics)”的学术会议,会议规格与国际数学家大会类似,会议邀请了12位当今一流的数学家作1小时主题报告,其中包括菲尔兹奖获得者斯梅尔、诺维科夫,沃尔夫奖获得者阿诺尔德、希策布鲁赫、卡尔森和西奈依.还有其它数学家作了45分钟报告与20分钟报告.
一类随机利率下的变额寿险模型研究
牛曼-贝塞尔级数的共轭级数
关于整函数的零点分布与分担值定理
一阶贝塞尔函数广义积分的数值计算
ECn(μ,In,φ)下的两种具体广义非中心X2分布
四元数非中心x^2分布,t分布,F分布及性质
20世纪前苏联的数学领袖——国际大师柯尔莫哥洛夫